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Section 1

Introduction

Section 1.1 Motivation

Let gl, be the matrix algebra over the complex numbers. The algebra gl, acts
naturally from the left as a complex Lie algebra on a r-dimensional complex vector
space V with a chosen basis by left matrix multiplication. Moreover, this action
induces a left action of gl, on V®", the n-fold tensor product of V. However, V®"
also admits a right S ,-module structure, where S, denotes the symmetric group in
n symbols, and secondly this right action commutes with the left action of gl,. If
U(gl,) denotes the universal enveloping algebra of gl, and CS, the group algebra
of §,, then this means that V®" is a U(gl,)-CS ,-bimodule. In fact, the U(gl,)-left
action and the CS ,-right action do not only commute, the images of their actions
in the endomorphism ring of V®" are actually the centralizers of each other.

Now since CS, is semisimple, the double centralizer theorem (cf. (Kna(7,
Theorem 2.43)) can be applied to obtain a decomposition of V*" into summands
of the form V; ® S, where V, is a simple U(gl,)-module and S , is a simple CS ,,-
module. This statement is known as the classical Schur—Weyl duality (cf. (Wey39))
and was first proven without using the double centralizer theorem.

However, there exist quantized versions of the algebras U(gl,) and CS,;: The
complex quantum group U,(gl,) (see (HPK91, Section 0)) and the complex Hecke
algebra H,(q) associated to the symmetric group §, (cf. (Hum90, Section 7.1)),
where ¢ is a non-zero complex parameter. Moreover, if H,(¢?) is semisimple, i.e. if
q2 is not a kth root of unity for k = 2, ..., n (see (HST15b, Theorem 5.1)), then one
can quantize this Schur-Weyl story: The vector space V®" admits a U,(sl,)-H, (qz)—
bimodule structure, such that the images of the actions of U,(sl,) and H,,(qz) are
the centralizers of each other (cf. (Jim86, Proposition 3)) and V®" decomposes
similar as in the classical case, now by using the double centralizer theorem, into
summands V;®S ,, where V, is a simple U, (gl,)-module and S ; is a simple H,(¢%)-
module. This statement is the quantized version of Schur-Weyl duality for U,(sl,)
and Hn(qz).

Identifying V®" as g-tensor space and using (Mur95, Theorem 6.3) and (Mur95,
Theorem 7.2) or using (DJ86, Corollary 4.12) actually implies for n > r, that the
Hecke algebra H,(¢*) does not act faithfully on V®"; in particular, the image of
its action beeing the centralizer of the quantum group U, (gl,) is a proper quotient
of H,,(qz). In the case where r = 2, this quotient turns out to be another known
object, namely the Temperley—Lieb algebra TL,(q), which is a diagram algebra of
so-called “planar Brauer diagrams”, see also (Jon85). We are primarly interested
in the study of this algebra, the Temperley—Lieb algebra TL,(g). Therefore, by
examining the kernel of the H,,(¢*)-action, one can describe the representation the-
ory of the Temperley—Lieb algebra via the Hecke algebra, supposed that H,,(¢?) is
semisimple, where g-Schur—Weyl duality holds.

However the Temperley—Lieb algebra TL,(g) can be studied intrinsically with-



out using g-Schur-Weyl duality. If ¢ is a kth root of unity for a k < n, then TL,(q)
is not semisimple anymore (cf. (HST15a, Proposition 5.1)), neither is H,,(qz) (see
(HST15b, Theorem 5.1)) and nor can g-Schur—Weyl duality be applied. Neverthe-
less, we have some tools at hand to examine the non-semisimple Temperley—Lieb
algebra. In the semisimple case, decomposing 7L,(q) into simple 7L,-modules is
equivalent to describe all minimal central idempotents 7L, (g). Therefore, a good
approach would be to describe the minimal central idempotents, also called (higher
order) Jones—Wenzl projectors (cf. (Wen87),(GW93) and (CH15)), by explicit for-
mulas and try to move as many of these formulas as possible to the non-semisimple
world. In (CH15) these Jones—Wenzl projectors are described with aid of a com-
plete set of pairwise orthogonal minimal idempotents p; in TL,(g), which can be
indexed in a pretty way by paths ¢ in the branching graph of TL,(q), supposed that
TL,(q) is semisimple. However, if TL,(g) is not semisimple, then these minimal
idempotents are not all well-defined and hence another complete set of idempotents
is needed to describe minimal central idempotents. In (GW93) a sufficient number
of well-defined idempotents in the non-semisimple 7L,(g) is found along with a
description of the minimal central idempotents modulo the radical in TL,(g).

Since the Temperley—Lieb algebra is an example of a diagram algebra, the
Jones—Wenzl projectors and also the idempotents presented in (GW93) can be ex-
pressed by diagramatic language. However, the arguments presented in (GW93)
are of pure algebraic nature, so our main interest is to translate all the proofs of
(GW93) into diagramatic language. When dealing with the diagramatic presenta-
tion of the Temperley—Lieb algbera, one soon encounters a certain basis consisting
of arc diagrams, which is an example of a cellular basis (cf. (GL96)) equipping the
algebra TL,(q) with a cellular structure. If TL,(q) is semisimple, then the complete
set of pairwise orthogonal minimal idempotents p; gives rise to a basis p; s of ele-
ments in non-trivial subspaces p,TL,(q)ps and a natural question would be to relate
these elements p; s to the cellular basis consisting of arc diagrams. This relation
turns out to be an upper triangular base change, which we believe was not known
yet. As a side result, a partial coefficient formula for the minimal idempotents p,
expressed in the cellular basis consisting of arc diagrams is obtained.

Section 1.2 Overview

This master thesis is seperated into three sections.

Section 2 is about recalling the definition and commonly known facts of the
complex Temperley—Lieb algebra TL,(g) and the complex Hecke algebra H,(q),
both depending on a natural number n and a complex non-zero parameter g. In
Section 2.1 these definitions are stated and moreover the algebra 7L,(g) is identi-
fied as a quotient of H,,(¢?).

Two important notions involved in describing the algebras TL,(g) and H,(q)
are those of partitions and tableaux. Section 2.2 starts by describing a cellular
basis of TL,(q) consisting of arc diagrams S; ; indexed by pairs of tableaux ¢ and
s of same shape A, where A ranges over Par,(n), the set of partitions of n with at



most 2 rows. Partitions and tableaux are also used to describe the simple modules
of the algebras TL,(q) and H,(q), in case they are semisimple: The set of simple
modules S, of H,(q) (resp. TL,(q)) is parametrized by Par(n), the set of partitions
of n (resp. Parp(n)). S, has a basis consisting of tableaux ¢ of shape A, such that
the algebra actions can be described by explicit formulas. Moreover, the module
structures are compatible with the identification of TL,(g) as a quotient of Hn(qz).

Section 2 ends with Section 2.3, which is devoted to sketch a proof of a quan-
tized version of Schur—Weyl duality, which in turn yields another description of
the Temperley—Lieb algbera. If V is a complex r-dimensional vector space with
a chosen basis, then it can be equipped with an U,(gl,)-module structure. It actu-
ally suffices to consider the quantum-group U,(sl,), since the image of its action
coincides with that of U,(gl,). Using the comultiplication of U,(sl,), the n-fold
tensor product V", becomes a U,(sl,)-module. Moreover, V" also admits a right
H,(¢*)-module structure commuting with the left U,(sl,)-action. Now if H,(q?)
is semisimple, g-Schur—Weyl duality decomposes V®" into summands of the form
Va® S ,, where V) is a simple U,(sl,)-module, S, a simple Hn(qz)—module and
A ranges over Par,.(n), the set of partitions of n with at most r rows. Analyzing
the kernel of the H,,(¢)-action on V®" shows for r = 2, that the Temperley—Lieb
algebra TL,(g) is isomorphic to the centralizer Enqu(slz)(V@’”) of Uy(sh) in the
endomorphism ring of V®".

Section 3 is the core of this master thesis, we mainly follow (GW93). Our
presentation differs slightly, we tried to connect (GW93) with the more modern
diagramatic presentations of the Temperley—Lieb algebra. To understand the non-
semisimple algebra TL,(q), we follow the “evaluation principle”, meaning that we
show structure results for semisimple generic algebra 7L, (v) and deduce by “eval-
uating” at v = ¢ corresponding results for the non-semisimple version. Section 3
is therefore devided into two parts, the first is devoted to the generic version and
the second to the non-semisimple one. However, we stress that all statements in
Section 3 only use diagramatic arguments.

Section 3.1 starts in Section 3.1.1 by decomposing 7L, (v) with aid of g-Schur—
Weyl duality into summands of the form Endy, (,)(S1 ® Va) = Endc(S ). This
leads to a shift of perspective, instead of studying simple 7L, (v)-modules, the focus
is turned onto the minimal central idemptents z, € TL,(v) corresponding to the
identity in End(S ;). The special case 4 = (n) is the first case to treat: z(, turns
out to be the nth Jones—Wenzl projector p, € TL,(v), which can be defined by
a diagramatic recursive rule. Following (CH15), we continue in Section 3.1.2 by
introducing path idempotents p, for ¢ a standard tableau of shape A in Parp(n).
The path idempotents are also defined by a recursive diagramatic rule and form
a complete set of pairwise orthogonal minimal idempotents in 7L, (v). Moreover
their action on § , is particularly simple: p; fixes the basis element ¢ € S, and sends
every other basis element s € S, for arbitrary u to zero.

Motivated by the action of the path idempotents on simple modules, the higher
order Jones—Wenzl projectors p,x are defined in Section 3.1.3 by diagramatic lan-
guage, such that they correspond to the minimal central idempotents z,;: For A in
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Pary(n) with k = 4 — Ay, the kth higher order Jones—Wenzl projector p, is defined
to be the sum of all path idempotents p, such that # is of shape A.

To push formulas concerning elements in the generic algebra TL,(v) to the
non-semisimple complex version 7L, (g), where ¢ is a 2/th root of unity, we start
Section 3.2 by clarifying, which elements of the generic Temperley—Lieb algebra
actually give rise to elements in the complex non-semisimple version. These el-
ements are called evaluable and are roughly speaking linear combinations of arc
diagrams, where all coeflicients are elements in C(v) without a pole in g. Not all
path idempotens p; turn out to be evaluable, but certain sums of those are. The
involved notions are:

o The mth critical line consist of all partitions v, such that vi — v, + 1 = ml.
Such a partition is called critical and so are its tableaux.

o [f ris the maximal critical subtableau of ¢ ending on the mth critical line, then
t is defined to be the path obtained from ¢ by reflecting ¢ \  in the branching
graph about that mth critical line.

In Section 3.2.1 we try to determine which p, := p; + pr are evaluable and more-
over we construct new evaluable idempotents (not necessarily path idempotents)
out of old ones. This contains a couple of rather calculation heavy arguments,
which are needed for Section 3.2.2. The former now contains the main results of
this master thesis, including a description of the maximal semisimple quotient and
the radical of TL,(q). To understand the main statement, the following terminology
is needed.

e For A in Pary(n), [A] denotes the orbit of A under the action of the reflection
group of Z acting on Par,(n) by reflecting about critical lines in the branching
graph. Two partitions u and v in [A4] are called adjacent, if there is exactly
one critical line between u and v.

e For a non-critical partition 4 € Par,(n) between the mth and the m + 1th
critical lines, L(A) is defined to be the set of tableaux of shape A with proper
maximal critical subtableau on the mth critical line.

e If A is critical, then f; is the number of tableaux of shape A. On the other
hand, for A non-critical, Zﬁ is the sum over all py;;, where ¢ ranges over L(4),
and ff denotes the cardinality of L(1). Furthermore zj,; is defined to be the
sum of all z£, where v is ranging over [A].

The results of Section 3.2.2 are summarized be the following theorem (see Theo-
rem 3.2.28 and Theorem 3.2.30):

Theorem ((GW93)).

1. If A is critical or to the left of the first critical line, then 7)(q) = Z/Ll(q) is a
minimal central idempotent in TL,(q). Furthermore zyTL,(q) = My,C.



2. If dis non-critical and to the right of the first critical line, then z/Ll is evaluable
and ZXTL,2(q) = {(45). A.Be Mﬁc}.

Moreover, z4(q) is a minimal central idempotent. The radical of zj0TL,(q)
is nilpotent of order 3 and spanned by the spaces zﬁTanﬁ(q) for adjacent
diagrams u,v in [A] and by the algebras rad(zﬁTL,,z[;(q)) for u € [A]. The

maximal semisimple quotient of ziTLy(q) is isomorphic to @ﬂe[ aM f/»JLC.

Section 4 is about consequences of Section 3.1. Since the p, form a complete
set of pairwise orthogonal idempotents, TL,(v) decomposes into subspaces of the
form p,TL,(v)ps, which are all at most one-dimensional. In particular, there exists a
basis indexed by pairs of tableaux s and ¢ of elements p; ; in the non-zero subspaces
p:TL,(v)ps. In fact, p,TL,(v)ps is non-zero if and only if s and ¢ are of same shape,
thus the set of elements p; ; indexed by pairs of tableaux of same shape is a basis
of TL,(v). In Section 3.2.1 this basis was already implicitly used, however it was
not explicitly defined. The aim of Section 4.1 is to define this basis in a consistent
way, such that it satisfies the following properties:

o Ift = s, then p;, coincides with the path idempotent p; (see Definition 4.1.8).
e If¢, s and r are of same shape, then p; ;ps, = p:, (see Proposition 4.1.10).

In Section 4.2, the basis for 7L4(v) is expressed in the basis ; ; by explicit calcula-
tion. If one orders both bases by a well-known partial order, the dominance order,
the matrix expressing the base change turns out to be upper triangular. We show in
Section 4.3, that this is no coincidence, but that in general the basis of elements p;
and that of elements £, ; are in an upper triangular relation. As a side result, a par-
tial coefficient formula is obtained. The results of Section 4.3 can be summarized
by the following theorem (see Theorem 4.3.18):

Theorem. The basis p, s is related by an upper triangular relation with respect to
the dominance order to the cellular basis f3; ; consisting of arc diagrams. Moreover
foru,w,t, s of same shape, the coefficent ci,’fw Of Buw I Prs = Diuarwas c;’,SW,B,, s can
be described by an inductive formula.
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Section 2

The Temperley-Lieb algebra

Let g € C* be a complex number. In Section 2.1 the definition of the main ob-
ject of this thesis is recalled, the complex Temperley—Lieb algebra TL,(q) in n
strands, which is a unital associative C-algebra depending on the parameter g. To
understand its representation theory and to find out, when it is semisimple, it is con-
venient to consider another well-known algebra, the Hecke algebra H,,(q) of type
A. Although the reader might know these algebras, we summarize in Section 2.2
known facts about the representation theory of 7L,(q) and of H,(¢) and moreover,
we get to know for which g they are semisimple: TL,(g) is semisimple if ¢* is not
a kth root of unity for k = 2,...,n and H,(q) is semisimple if g is not a kth root of
unity for k = 2,...,n. Semisimplicity allows to apply another powerful tool, the
double centralizer theorem, which results in a version of a Schur—Weyl duality in
Section 2.3. Without semisimplicity a more detailed study is necessary, this aspect
is treated in more detail in Section 3 and excluded in this section.

All the results in this section are already known, but we believe that it is useful
to have them combined at hand, instead of citing them only.

Section 2.1 The Hecke algebra and the Temperley—Lieb algebra

In this section ¢ will always denote an element in C* = C\ {0}. v on the other hand
will always denote a generic parameter.

Although one can define the Hecke algebra for any Coxeter system, see for
example (Hum90, Section 7.1), we only state the definition of the Hecke algebra
associated to the Coxeter system S = {sy,...,8,-1} C S, of simple transpositions
s; in the symmetric group S ,;; this is the Hecke algebra of type A,—;, which we will
call in this thesis the Hecke algebra in n-strands or just the Hecke algebra.

Definition 2.1.1. 1. The generic Hecke algebra in n-strands over Z[v,v™'] is
defined to be the unital, associative Z[v,v™']-algebra H%(v) generated by

T1,...,Tuh-1 subject to the following relations:
T? = (v—DT; +v, ifl<i<n-1, (2.1)
TiTig1Ti = Tin TiTis1, ifl<i<n-2, (2.2)
T,‘Tj = TjTl', lf|l - ]I > 1. (23)

2. Moreover, the generic Hecke algebra in n-strands over C(v) is defined by
setting H,(v) := HS(v) := H2(v) ®z C(v).

3. Finally, for g € C*, the complex Hecke algebra in n-strands is defined to be
H,(q) = Hf(q) = H%(v) ®zp-11 C, where v acts on C by substitution.

One sees easily, that the generators 7; are invertible with inverse T = ¢~'(T,—
g + 1). Now, for w € §,, the element T, is defined by

Tw = Til e Tir S H%(Q)’



where w = s;,...s; is a reduced espression for w. By (2.2) and (2.3) this is
independant of the choice of the chosen reduced expression and moreover, the
following proposition, which can be found in (Hum90, Section 7.1), identifies the

set of elements T',,,w € S,, as a basis of H%(q):
Proposition 2.1.2. The set {T,,,w € S ,} is a basis of the Hecke algebra H%(q).
For d € Z51 and g # 1, the notation of the usual quantum integers, defined by
—d

d
9 — 49 -
———€Zgq '),
q9—49

is used. The same goes for v. The main object of study of this thesis is introduced:

[d] = [dly = g" " +q" 2 4 g =

Definition 2.1.3.  I. The generic Temperley—Lieb algebra in n-strands over
ZIv,v='1 is the unital, associative Z[v, v‘l]-algebm TL%(V) generated by

Ui,...,U,_1 with relations
U? = [2,U;, ifl<i<n-1, (2.4)
U:U;U; = U, ifli—jl=1, 2.5)
vU;=U;U,, ifli — jl > 1. (2.6)

2. Secondly, the generic Temperley—Lieb algebra in n-strands over C(v) is de-
fined to be TL,(v) := TLS(V) = TL%(V) Q711 C(V).

3. Moreover, for g € C* the complex Temperley-Lieb algebra in n-strands is
defined by TL,(q) = TLS(q) = TL%(V) ®zpv-1] C, where v € Z[v, v 1 acts
on C by substitution.

For the rest of this section, only the complex versions of the Hecke algebra and
the Temperley—Lieb algebra are needed, the generic version will return Section 3.
However, the theory for TL,(q), where ¢ is not a root of unity, is the same as for
TL,(v). The following theorem establishs a connection between 7L, (¢) and H, (qz):

Theorem 2.1.4. The maps
¢1: Hu(q?) = TLu(q), Ti > qU; — 1, @7
¢2: Ho(q®) = TLu(@). Ti = —qUi + ¢° 2.8)
are surjective morphisms of algebras. Moreover Ker ¢ is generated by
T\T)Ty+ T\ To+ToT+ T +Th + 1.
and ker ¢ by q‘6T1 T-T1 — q‘4T1 T, — q_4T2T1 + q_2T1 + q‘sz - 1.

Proof. 1t is easy to check that ¢; respects the relations and defines a surjective
morphism of unital algebras. That the element is in the kernel can be checked by
direct computation. That it spans the kernel follows by analyzing the idempotents
in the Hecke algebra in the kernel of the action induced by Schur—Weyl duality.
However, we do not have a good reference and refer to (Weel2, Section 3.2). O



In the following pages, we will use the presentation of TL,(g) as a quotient of
H,(¢%), however we choose to work with ¢; instead of ¢», to stay compatible with
the notions in (GW93), which is the main source of Section 3. But this choice does
actually not amount to greater disadvantage:

Remark 2.1.5. ¢, and ¢, are related via ¢; = @ o ¢, and ¢ = ¢, o 5, where

a: TL,(q) = TL,(q), U; — =U; + [2],
B: Hy(q) = Hu(q), Ti > ~T; +q* - 1.

It is commonly known that the Temperley—Lieb algebra TLZ(q) has a Z[q, ¢~ '1-
basis consisting of “planar Brauer diagrams”, here called arc diagrams, in 2n
points, where we follow (GL96, Example 1.4).

These consists of two edges, called top and bottom edge, each of them en-
dowed with n vertices, such that each vertex is joined to just one another vertex
and none of the joins intersect, when drawn in the rectangle defined by the two
edges. Multiplication of diagrams is given by vertical juxtaposition, removing in-
terior circles and multiplying with the factor [2] for each removed interior circle.
The generators U; and the unit element correspond to the arc diagrams in Figure 1.
We also call a vertex a bottom vertex, if it is on the bottom edge, and a top vertex,
if it is on the top edge. In the same spirit, 7L, 4(q) is the space of arc diagrams

Figure 1: The generator U; and the identity.

with n vertices on the top edge and d vertices on the bottom edge, supposed that
d and n are of same pairity. This is then a TL,(q)-TL4(g)-bimodule, where the ac-
tions are defined by concatenation of arc diagrams, removing interior circles and
multiplying with [2] for each removed circle, similar as before. Moreover, stacking
diagrams defines a TL,(g)-TL,,(q)-bimodule morphism

TLn,d(Q) ® TLd,m(‘I) - TLn,m(Q)-

The representation theory for TL,(g), if ¢ € C* is not a root of unity, is well
understood, as well as that for H,(g). The main definitions and facts concerning
this are stated in the next section, namely Section 2.2.

Section 2.2 Combinatorics and representations

To understand this section, the reader is assumed to be familiar with the notion of
partitions and tableaux. The set of partitions of »n is denoted by Par(n) and Par,(n)

10



describes the subset of those with at most r rows. For a partition A € Par(n),
(O ={0,)) €Zs0X 2>, 1 < j< A, 1 <i<h)

denotes the associated Young diagram. Its elements are called nodes. Moreover
the graph B is defined to be the graph with vertex set | J,, Par(n) and oriented edges
A — u, whenever (u) can be obtained from (1) by adding a node. Consequently
B, denotes the subgraph induced by | J,, Par,(n), see also Figure 2. The orientation
in Figure 2 is implicitly set from top to bottom. It will turn out later in this section
(see Corollary 2.2.12), that this graph is the branching graph for the Temperley—
Lieb algebras TL,(q),n € N.

‘Eﬂ D
BEEH:\ BEB:ED [CTTTTTTT

[IITTTT
(W] O

Figure 2: The branching graph B, of the algebras TL,,n € N.

Following standard notation, Tab(1) denotes the set of tableaux of shape A €
Par(n) and Std(A) the subset of standard ones, where we mean by standard, strictly
row-increasing and strictly column-increasing. Similarly, the set of all tableaux is
denoted by Tab(n) = U eparn) Tab(1) and that of all standard ones by Std(n) =
U aePar(n) Std(n). In the same spirit, we use the notation Tab,(n) and Std,(n).

Furthermore, we can identify a tableau ¢+ € Tab(1) with a bijection (1) —
{1,...,n}. We also write Shape() = A. Moreover, if ¢ is standard, then ¢ can also
be identified with a path @ — A — ... — A® = 2in B. Respecting this,
¢ denotes the subpath obtained from ¢ by removing A®. If 1 € Par(n), then ¢
corresponds actually to a path in B;, therefore, if this is the case, we denote by ¢*

11



and 7~ the two possible extensions of 7 in B, where ¢* is the extension obtained by
adding n + 1 to the first row of ¢ and ¢~ by adding n + 1 to the second line (1~ does
not exist if A, = Ay).

There is a partial order on Par(n), which extends to Std(n) and which is usually
called the dominance order:

Definition 2.2.1. . Foru, A € Par(n), A dominates u, written A > y, if

Al + A2+ forall j > 1.

2. Moreover, for t, s € Std(n), t is said to dominate s, again written t > s, if
Shape( ;) &> Shape( s) forallk=1,...,n,
where t|, is obtained from t: (1) — {1,...,n} by restricting to {1, ..., k}.

Std(A). ! is unique and #* has its numbers 1, . .., n ordered from left to right,
top to bottom, rows before columns.

Remark 2.2.2. 1. Let #! € Std() be a tableau, such that ! > ¢ for all ¢ €

2. When dealing with two-row partitions and the corresponding tableaux, one
can easily visualize the dominance order in the branching graph: For two
partitions 4 = (A1, ), u = (u1,42) € Parp(n) it is clear that A > pu, if
A1 > py. Moreover two paths t, s € Std(n) satisfy ¢+ > s if and only if ¢ is
weakly to the right of 5. An example is given in Figure 3.

With the dominance order defined, it is now possible to determine the dimen-
sion of H,(gq). To do so, we observe first that

Hy(q) = Hu(q), Ty = T3y = T,p1, (2.9)

defines an anti-automorphism of algebras. Moreover, the symmetric group S, acts
on the set of tableaux Tab(1) of shape A € Par(n) by permuting entries. Writing
S, c S, for the row stabilizer of 4, we can define for A € Par(n) and ¢, s € Std(Q),

xp 0= Z T, and x;'; := Ty X2 T (2.10)

weS )

where d(f) € S, is a reduced element, such that ¢ = d(r)(+*). Then one can prove
the following theorem, see (Mur95, Theorem 4.17).

Theorem 2.2.3. The set {x!.t,s € Std(1),1 € Par(n)} is a basis of H,(q). In

t,s°

particular dim H,(g) = n! = #S,,.

This basis is also called Murphy’s standard basis. Having obtained the di-
mension of the Hecke algebra, it would also be nice to do so for TL,(g). Let x — X
denote the map induced by flipping diagrams vertically in TL,(g).
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Figure 3: Two paths s < ¢ and two non-compatible paths w and u.

Definition 2.2.4. For an arc diagram B, a line of B is horizontal, if its endpoints are
both top or bottom vertices, otherwise it is vertical. To a path t of shape A € Pary(n)
with d = A1 — Ay, we associate an arc diagram 3;. € TL,, 4(q) by the condition:

o ke{l,...,n}is in the second row of t if and only if the kth top vertex is the
right endpoint of a horizontal line.

Moreover, for A € Pary(n) and s,t € Std(1) we also write B,; = . Bt e TL,(g).
Example 2.2.5. Let n = 10 and let ¢ and s be the tableaux ending in (7, 3) given by

r=1][3]s[7]8]9f10] = [1][2]3][5]6]7]10]
2]4]6 4]8]9

Then we obtain

Remark 2.2.6. 1. It is clear that (¢, s) — B, defines a bijection between the
set U aepary(n) Std(4) X Std(2) and set of arc diagrams in TL,(q), i.e.

{Brs, t, s € Std(2), A € Pary(n)}

13



is a basis of TL,(q).

2. This basis is actually a cellular basis, see (GL96, Example 1.4), which turns
TL,(g) into a cellular algebra. Cellular algebras were first defined by Graham
and Lehrer in (GL96).

Having notation and terminology fixed, we can now describe the simple mod-
ules of H,,(q) and TL,(q). However, to simplify formulas, we shall another generator-
relation presentation for the Hecke algebra. Following (Wen88, Section 2), setting

Ci=Ti+1fori=1,...,n-1. (2.11)

replaces (2.1), (2.2) and (2.3) with

C? = (1+q)C;, ifl<i<n-1, (2.12)
CiCiy1Ci — qCi = Ci11CiCiy1 — qCiy, ifl1 <i<n-2, (2.13)
CiC;=C;C, ifli —jl > 1. (2.14)

Remark 2.2.7. 1. The generators C; are more related to the generators U; of
the Temperley—Lieb algebra than the generators 7; are: We obtain ¢(C;) =
qU; and moreover ker ¢; is generated by

C1C2C1 - C]Ci = T1T2T1 + T1T2 + T2T1 + T1 + T2 + 1.

2. One could choose to use le = g — T; instead of C;, but then one should
replace ¢ by ¢, in this and following sections.

To define H,(g)-modules respectively TL,(q)-modules associated to a partition
A, we still need some more notation. We follow (Wen88, Section 2):

Definition 2.2.8. Fort € Std(n) and 1 < i < n the number d(t,1) is defined to be
d(t,i) = c(t,i) — r(t,i) — (c(t,i+ 1) — r(t,i + 1)), (2.15)
where c(t,1) denotes the column number and r(t, i) the row number of i in t.

Then we shall use the notations

1= qd+1
ACEE (2.16)
d+1
Mg = g'al (D) = | n I 2.17)

supposed that g (respectively ¢°) is not a dth root of unity. (2.16) and (2.17) are
motivated by the corresponding coefficient under (Wen88, (2.2)). Actually ¢> not
being a dth root of unity is equivalent to [d] # 0.

Considering tableaux as bijections from (Shape(r)) — {1,...,n} implies that
si(t) := s; ot is the tableau obtained from ¢ by interchanging the numbers i and i + 1.

14



If t € Std(n), such that s;(¢) is not standard any more, then i and i + 1 must be in the
same row or column, hence d(¢, i) = =1, implying

Jet @@ = 0= \Jalt @, (@) 2.18)

Following (Wen88, (2.3)), we define the g-analogs of Young’s normal representa-
tion:

Definition 2.2.9. Let A be a partition of n.

1. Assume that q is not a kth root of unity for k = 2,...,n and let Sf"@ be the
vector space with basis Std(2). Then we define a H,(q)-action on S /IH”(q) by

Cit = alfy (@1 + \Jalt, @ay,  (@)si0). (2.19)

2. If[kly # 0 for k = 2,...,n and if A has at most two rows, we also define an

action of TL,(q) on S /{L”(q), the same vector space as above, by setting

Uit = g7 Cut = alfs (@)t + \Jalt (@a™  (@)siC0). (2.20)

(2.18) ensures that (2.19) and (2.20) are well-defined. One can check, that this
defines in both cases a representation, for a proof we refer to (Wen88, Section 2).
Moreover one can check that ker ¢ from (2.7) acts by 0, if A is a partition with at
most 2 rows, so the representation of H,,(qz) descends to TL,(q) under ¢;.

Actually these modules describe the simple ones:

Theorem 2.2.10. 1. Suppose that q is not a kth root of unity fork = 2,...,n.
Then S f"(q) is a simple module and the set of all S f”(q), A € Par(n) forms a
complete list of inequivalent simple H,(q)-modules.

2. If [kl # O for k = 2,...,n, then similarly the set of all SfL”(q), A € Pary(n)

forms a complete list of inequivalent simple TL,(q)-modules.

Proof. We only sketch a proof here, a complete one can be found for example in
(Wen88, Section 2). The proofs for H,(q) and TL,(q) are analoguous, thus we
only consider H,(g). Let M, be the H,(¢)-module defined as the vector space with
basis Tab(d) (not only standard tableaux) and the same action as above. By the
above condition on ¢ not being a kth root of unity for k = 2,...,n, the tableau
t € Std(n) satisfies a’f . (q) = 0, if and only if d(t,i) = —1. In particular SH@ i
an invariant subspace of M, and therefore a submodule. The map ¢ — ¢ induces
an isomorphism of vector spaces between § f"(q) and P reaS S{”’l(q), where I’ C A
means, that A’ is a partition obtainable from A by removing a box. Analyzing
the action of H,(q) actually implies, that this induces an isomorphism of H,,_;(q)-
modules. Then one can use induction to show that S, is simple. Moreover, if u
and A are two inequal partitions and n > 2, then at least one of them contains a
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partition A’ that is not contained in the other one. In particular, S, and S, are
non-isomorphic as H,_;(g)-modules. Moreover, if V is any simple H,(¢)-module,

it decomposes by induction into a sum of some § 5”’1(‘1) as a H,_1(g)-module. So
Hy(q)
. O

V must contain a simple S SI"(q), implying that V is already S

Since the branching rule S, = P vea S v is the same as for the group algebra
CS,, of the symmetric group S ,, H,(g) turns out to be semisimple. A more general
criterion for semisimplicity can be found in (HST15b, Theorem 5.1) for the Hecke
algebra and in (HST15a, Proposition 5.1) for the Temperley-Lieb algebra.

Corollary 2.2.11. If q is not a kth root of unity for k = 2,...,n, then H,(q) is
semisimple. In particular, if [k] # 0 fork =2,...,n, also TL,(q) is semisimple.

Proof. The dimension of H,(q) is n! by using Theorem 2.2.3. Moreover, the simple

S ,-module Si” associated to the partition A, which is the the dequantization of

S Hy,(q) S i‘ln(q)

e is of same dimension than

, which implies
2 2
dimH,(q) = n! = dimCS, = Z (dims$7)” = Z (dim s @)?
AePar(n) AePar(n)
Thus H,(g) is semisimple. TL,(g) is semisimple, as it is a quotient of H,(¢%). O

Because we will work a lot with the branching graph of the Temperley—Lieb
algebras in Figure 2, we stress this fact once again:

Corollary 2.2.12. If[k] # O for k = 2,...,n, then the graph B, introduced before
(see Figure 2) is the branching graph of the algebras TL1 C TLy C ...TL,.

To avoid confusion, the inclusion TL(g) C TL,(g) is sometimes denoted by
TLy(q) » TL,(g), x — xU 1.

In diagrams x U 1 is obtained from x by adding n — k strands to the right of all
diagrams in the expression of x.

Now that TL,(¢) and H,(q) are semisimple with the right choice of the param-
eter g, we can actually describe TL,(g) by a Schur—Weyl duality statement. This
only works in the semisimple case. Section 2.3 is devoted to this perspective.

Section 2.3 A Schur—Weyl duality

If V is a r-dimensional C-vector space, it is in a natural way a left module of the
Lie algebra gl, = M,C by left multiplication. Now by using the comultiplication
of its universal envoloping algebra U(gl,) defined by x = x® 1 + 1 ® x for x € gl,,
the tensor space V®" becomes a left U(gl,)-module. However, on the other side the
symmetric group S, acts from the right on the space V®", so does its group algebra
CS ,,, and moreover this action commutes with the left U(gl,)-action. Furthermore,
one can actually show that their images in the endomorphism ring of V®" are the
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centralizers of each other. Applying now the powerful double centralizer theorem
allows decomposing V®" into a sum of spaces of the form V; ® S, where V, is
a simple U(gl,)-module, i.e. a highest weight module, and where S, is a simple
S,-module. This statement is known as the Schur—Weyl duality in the classical
case.

However, this statement holds in a greater generality. We will consider here
a quantized version, namely we replace CS, by the Hecke algebra H,(q*), the
universal enveloping algebra U(gl,) of the Lie algebra gl, by the quantum group
U,(gl,) and the C-vector space V by a certain U,(gl,)-module. Since the images
of Uy(gl,) and U,(sl,) in that endomorphism ring will coincide, we will work with
sl, instead of gl, here. Later as a consequence in the case r = 2, the Temperley—
Lieb algebra will be described as the image of the Hecke algebra H,(g?) in the
endomorphism ring.

Summarizing, this section is mainly about to the following statement:

Theorem. Assume that g* is not a kth root of unity for k = 2,...,n. Let V be the
Sfundamental U,(sl,)-module. Then we obtain a decomposition as Uq(sIr)—Hn(qz)—

bimodules
ver= (5 sae v,
AePar (n)

2
where the S f"(q ) are simple Hn(qz)-modules, the V, are simple U,(sl,)-modules
and the sum ranges over all partitions A of n with at most r rows.

The first necessity to understand and prove the above statement is to introduce
the used language. We start by recalling the definition of the centralizer.

Definition 2.3.1. For a K-vector space M and S C Endg(M), the centralizer of S
in Endg (M) is defined to be

C¥(S) :={¢ € Endg(M), pos=so¢p, Vse S}

Remark 2.3.2. If A is a semisimple C-algebra and p: A — End(V) a morphism
of C-algebras for a complex finite dimensional vector space V, then (A) := p(A)
is again a semisimple algebra, since the property being semisimple is closed under
taking submodules and quotients by semisimples.

The following version of the double centralizer theorem is not shown here, we
instead refer to (KnaQ7, Theorem 2.43) for a version concerning simple algebras
and to (KP96, Section 3.2) for a version concerning semisimple algebras:

Theorem 2.3.3 (Double Centralizer Theorem). Let K be an algebraically closed
field, W be a finite dimensional K-vector space and A C Endg(W) semisimple.

1. Then A’ = C}}(V(A), the centralizer of A in Endg(W), is a semisimple subal-
gebra of Endg(W) and C)/ (CY(A)) = CY(A") = A.
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2. Wdecomposes as an A ®k A’-module into simple A @k A’-modules W; of the
form V; ®g Vl.’ , where
(a) Vi is a simple A-module and V! a simple A’-module and

(b) the V; form a complete set of inequivalent simple A-modules, so do the
V! respectively. In particular, the sets of isomorphism classes of simple
A-modules and simple A’-module are in bijective correspondence.

H,(g%) will play the role of A’. The role of A would normally be played by
another object, namely the quantum group U,(gl,), however four our purposes it is
sufficient to consider the quantum group U,(sl,), since the images of their actions
on the later defined tensor space V®" coincide. We briefly recall some facts:

1. The quantum group Uy(sl,) is the C-algebra in the generators E;, F;, K;, Ki‘1
for 1 < i < r— 1 subject to the usual relations, see for example (HPK91,

Section 0) for the general definition of the quantum group U,(g) associated
to a complex semisimple Lie algebra g.

2. Uy(sl,) admits a coalgebra structure with comultiplication A
ANE)=1QE +E®K,, AF)=K'9F,+F®l, (2.21)
AK) =K;®K;, (2.22)
3. The set of weights is given by
P={1,...,4-1), i = x¢"™,m; € Z}.
For o € {+1}~! we define the subset P, of weights of type o by
Py ={(A1,...,421), A =0:q™, m; € Z}.

We restrict to weights of type 1 = (1,...,1) from now on. A weight 1 =
(g™,...,q™")is called a dominant weight, if m; > Ofori =1,...,r—1 and
the set of dominant weights is denoted by P’.

The next theorem can be found for example in (Ros88, Theorem 2):

Theorem 2.3.4. 1. If q is not a root of unity, any finite dimensional U ,(sl,)-
module is semisimple.

2. The equivalence classes of simple finite dimensional U ,(sl,)-modules is in-
dexed by the set of dominant weights.

Let 2 = (¢™,...,g"™") be a dominant weight. If g is not a kth root of unity
fork =2,...,max;-1__,—1(m;), then we can associate to A a partition u of length at
most r by imposing the condition

Mi — i+l :mifori: 1,...,1’— 1.
The partition u is not unique, but if we restrict to u € Par(n) for a chosen 7, then u

is unique, if it exists.
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Example 2.3.5. Let V be a n-dimensional vector space with a chosen basis vy, ...,
v,. Then we define a U,(sl,)-action on V by imposing

Eip = vi, Evj=0, ifj#i+]1,
Fivi = vig1, Fvj=0, if j#1i,
Kivi = qvi, Kyvj=vj, if j#ii+1,
Kivie1 = ¢ 'vis1.

Then V corresponds to the simple U,(sl,)-module associated to the partition u =
(1,0,...,0). This module is called the fundamental module of U,(sl,).

The comultiplication defined in (2.21) and (2.22) induces a U,(sl,)-module
structure on V®", which is finite dimensional, thus decomposable into

ver = (Hm, v (2.23)
AeP’

as a U,(sl,)-module. Now an action of Hn(qz) on V®" is defined as follows:

Definition 2.3.6. Let T € End(V ® V) be the linear map defined by

(q2 -1vi®vi—qv;®v;, i<},
Vi®Vi -1 ® Vi, i=j (2.24)
—qvj Vi, i> ]
Then V®" admits a right H,(q*)-action defined by
Wy, ®---8v;).T; = (d® ' eT @id® (v, ®---®v;,), (2.25)
where T acts on the ith and i + 1th tensor factors.

To see that this action is well-defined, one has to check whether the relations
(2.2) and (2.1) hold ((2.3) clearly does). This can be done by direct computation.

Remark 2.3.7. This action may not seem to be the usual one: In (Jim86, Section
4) an action is defined in terms of R-matrices using the generators 7/ = g 'T; and
respective relations for the Hecke algebra. Then for example in (Du95, Section
1.2), this action is rewritten for the generators 7; and relations (2.1)-(2.3) in a more
convenient form, by defining the linear map T by

qvj®v;, i<,
Vi ® 4 R q2vi ® Vi, i= j, (2.26)
(qz—l)v,-®vj+qvj-®v,~, i> ]
(2.26) and (2.24) are connected by the automorphism S on Hn(qz) defined by 7; —
~T; + g% — 1, but this also intertwines the surjections ¢; and ¢, in Theorem 2.1.4,

see Remark 2.1.5. Therefore choosing ¢; instead of ¢, amounts to chose (2.24)
over (2.26).
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For an algebra morphism p: A — Endc(V), (A) denoted its image in the endo-
morphism ring of V. The following can be found in (Jim86, Proposition 3):

Proposition 2.3.8. V®" with the right action defined in (2.24) is a Uq(sI,)-H,,(q2)-
bimodule. If H,(q?) is semisimple, i.e. if ¢° is not a kth root of unity fork = 1,....n,
then

(Ha(q*)) = Endy, (s, (V") and (Uq(s1,)y = Endy, (,2)(VE").
Now Theorem 2.3.3 decomposes V®" into simple Uq(gl,)—Hn(qz)—bimodules:

Proposition 2.3.9. If ¢* is not a kth root of unity fork = 2, ..., n, then V®" decom-

poses into
2
A€Par,(n)

as Uq(SI,)-Hn(qz)-bimodules, where the S ) are simple Hn(qz)-modules and the Vg
are simple U ,(sl,)-modules.

Proof. The decomposition over A € Par(n) follows from Theorem 2.3.3 and Propo-
sition 2.3.8. To see the fact, that the sum ranges only over A € Par,(n), we argue as
in (H499, Section 3):

1. Let A be a composition of n of length at most r, i.e. atuple A = (11,...,4) €
N”, h < r, such that >.i Ai = n, and moreover let a be a row-standard tableau
of shape 4, i.e. a tableau, such that its numbers along rows increase. Then
we define an element v, € V®" by setting

Va = Ve@a,1) @ @ Vean),

where c(a, i) denotes the column number of i in a. The elements v, for all
such row-standard tableaux a are pairwise distinct and form a basis of V®".

2. If 1is a composition of n of length at most r and if M, denotes the subspace
spanned by elements v,, such that a is a row-standard tableau of shape A, then
M, is a H,(¢*)-submodule of V®". This can be seen by direct computation.
This means in particular that V®" = P 1 M2, where the sum ranges over all
compositions A of n of length at most r.

3. If A is a composition of n of length at most r, then ordering the rows A; lets
us obtain a partition u € Par,(n) and moreover it is clear that M, = M, as
right H,(¢*)-modules, since the action of Hn(qz) on v, is determined by the
column numbers, which coincide for u and A. In particular, we obtain

Ve ED My, (2.27)
AePar,(n)

where n, is the multiplicity of M, in V®".
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4. For A € Par.(n) let M* = x/lHn(qz), which equals the module M* defined
under (Mur95, Theorem 5.1) or under (DJ86, Lemma 3.2). If a, b are a row-
standard tableaux of shape A, then one can also define an element x,, as in
(2.10), such that the module M, is isomorphic to the module M* by sending
Va to x.,. This can be seen by comparing the action of H,(¢?) on x,., in
(Mur95, (4.2)) or in (DJ86, Lemma 3.2) and the action defined in (2.26).
Therefore, we obtain V& = P .. naM*.

5. By (Mur95, Theorem 6.3) and (Mur95, Theorem 7.2) or by (DJ86, Corollary

2
4.12), M* decomposes into simples D = § 5”(" ) with u > A If A has at most
r rows, then u has at most r rows too. In particular,

2
V®n ~ @ n:lsfl']n(q )’
AePar,(n)

2
where n’, is the multiplicity of § f”(q Vin ven, m|

One can check in the case r = 2, that ker ¢; of the map defined in (2.7) acts by
zero on V®", This leads to Proposition 2.3.10, where we refer to (LZ10, Theorem
3.5) for a proof. Actually (LZ10, Theorem 3.5) describes the situation for the
generic parameter v and moreover the generator-relation presentation of H,(g) is
slightly different. However, one can also see Proposition 2.3.10 by using (H&99,
Theorem 6), which is easier to understand and also uses our generator-relation
presentation of H,(g).

Proposition 2.3.10. If ¢* is not a kth root of unity for k = 2,...,n and if V is the
Sfundamental U ,(sly)-module, then Enduq(slz)(V@’) is isomorphic to the Temperley—
Lieb algebra TL,(q).

In particular, by use of Proposition 2.3.9 and Proposition 2.3.10 we obtain a
Schur—Weyl duality statement:

Corollary 2.3.11. If ¢* is not a kth root of unity for k = 2,...,n, then as U,(sh)-
TL,(g)-bimodules, we have the decomposition

®n _ q TL,(q)
ver= @ viesi.
A€Par;(n)

Now that we have identified the Temperley—Lieb algebra as an endomorphism
ring, one could ask how the highest weight projections look like if expressed by
diagramatic language. This gives rise to the theory of the (higher order) Jones—
Wenzl projectors, which we will deal with in Section 3. However, since diagrams
do not depend on g, we can actually also treat the non-semisimple case; this will
be done in Section 3.2.
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Section 3

Idempotents in the Temperley—Lieb algebra

In this section we summarize the theory of the (higher order) Jones—Wenzl projec-
tors, most of which can be found in (GW93). Apart from this source, we also took
some inspiration of (CH15). Although these projectors correspond under Schur—
Weyl duality to the highest weight projectors of quantum sl,, we define them in
Section 3.1.1 by a diagramatic recursion following (CH15). The advantage of this
aproach is that we can specialize “evaluable” equalities at a root of unity, where
Schur—Weyl duality does not hold. Following this idea, we define a complete set of
orthogonal idempotents by diagramatic relations, so-called path idempotents. Our
definition in Section 3.1.2 is basically (CH15, Definition 2.17). If S ; is the simple
TL,-module corresponding to a partition 4, then it has a basis indexed by tableaux
t of shape A. The path idempotent p; is defined in (GW93, Section 0.3) to be the
orthogonal projection onto the one dimensional subspace spanned by the basis ele-
ment ¢ in S 5. With these two descriptions of the p, in mind, we obtain by using the
diagramatic description of the path idempotents a purely diagramatic definition of
the higher order Jones—Wenzl projectors in Section 3.1.3, which then correspond
to the projections onto the isotopic components of the simple modules S ;.

But the definitions of the (higher order) Jones—Wenzl projectors and of the path
idempotents involve coefficents, which are not necessarily well-defined, if special-
ized at a root of unity. Therefore we need to keep track of the coefficents and
moreover we need to unterstand the relations between the path idempotents to get
a better understanding of the situation. Section 3.2 is devoted to this perspective,
following (GW93, Section 2). Section 3.2.1 consists of a couple of technical state-
ments, needed to construct in Section 3.2.2 a sufficient number of well-defined
idempotents. Not all of them are path idempotents and they do not give rise to
well-defined higher order Jones—WenzI projectors as in the generic case, but nev-
ertheless, we can identify with their aid the minimal central idempotents modulo
the radical of the Temperley—Lieb at a root of unity.

There is a broad literature about these idempotents, the results of this section
are well-known and can be found in (GW93) and (CH15), however some of the
proofs in Section 3.2.1 appear to be new.

Section 3.1 The generic case

In Section 2, ¢ € C* was a complex number, however, in this section it is helpful
to step back for a moment and to work over the field C(v), where v is a generic
parameter. Moreover, we point out that the theory for ¢ € C* being not a root
of unity works in parallel to the generic case. To make formulas more clean it is
convenient to write 7L, for TL,(v) and TL, x for TL,, ;(v).

22



Section 3.1.1 The Jones—Wenzl projectors

Proposition 2.3.10 states that 7L, is isomorphic to Endy,(si,)(V®"), where V is the
fundamental U, (sl,)-module from Example 2.3.5. By using Corollary 2.3.11 7L,
decomposes into

TL, = El’ldUV(g,[z) (V®n) = EndUV(Slz) [ @ V/‘{ ® S,l) = @ EndU\,(slz) (V/‘{ ® S,l)

AePary(n) AePary(n)

= P EndouS), (3.1

A€Pary(n)

where S, .= S ﬁL”(V) is the simple TL,(v)-module introduced in Definition 2.2.9.

Let zy € TL, correspond to the identity in End(S ;) under the above isomorphism:
This is a minimal central idempotent. Therefore with (3.1), TL,, decomposes into

TL, = @ 2 TL, = @ 2 TLazs.

AePary(n) AePary(n)

It is clear that multiplying with z, in TL, now corresponds to projecting onto the
S 1-isotypical component of TL,,.

The Jones—Wenzl projectors are now constructed diagramatically to be these
projections onto the isotypical components. Remember, that the inclusion 7L, —
TL,+, was denoted by x — x U 1. First defined in (Wen87) we define as in (CH15,
(2.4)) the Jones—Wenzl projectors:

Definition 3.1.1. The nth Jones—Wenzl projector p, € TL, is defined by the fol-
lowing recursive rule:

pnzls l:f.n:17

-1
[”[n]]<pn_1u1)hn_1<pn_1u1>, ifn=2 (32

Although p,, is not an arc diagram but a linear combination of these, it is con-
venient to illustrate p, by a box with n incoming and outcoming strands: p, =

. Then (3.2) can be rewritten in terms of diagrams:

DPn=pn-1 U1 -

-1y 2/

[n]

3.2)

|—|‘"71‘(\

The following characterization will identify p, with z, for 4 = (n). An equiva-
lent version (see Remark 3.1.3) can be found in (K194, Section 3.1).

Proposition 3.1.2. The Jones—Wenzl projectors p,, are uniquely characterized by:
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1. p, — 1is an element of the subalgebra of TL, generated by Uy, ...,U,_ as
an associative algebra.

2. poUi=0=Up,foralli=1,...,n—1.
Remark 3.1.3. 1. TL, is the unital, associative C(q)-algebra generated by the
elements Uy,...,U,—;. In particular, the subalgebra of TL, generated by

Ui, ...,U,_1 as an associative algebra does not contain the unit element 1 €
TL,, though it can have another element as the unit element.

2. In presence of the second property, the first one is equivalent to p, being
idempotent and non-zero:

e Assume that p, is idempotent and non-zero and satisfies the second
property. If p,, decomposes as p,, = yo + >.; vibi, where the b; are non-
empty words in the generators Uy, ..., U, (in particular they are not
equal to the unit element) and the y; some coefficents, then idempo-
tency and the second property implies

Pn= Py = PaYo Z YiPnbi = pnYo.
i

Since pj, is non-zero, yo must be one and hence p, — 1 is a linear com-
bination of non-empty words in the generators Uy, ... U,_;.

o [f the Jones—Wenzl projectors p,, satisfy the two properties, then they
are idempotent, since pﬁ =pu(pn— 1)+ pp, =0+ p,.
Proof of Proposition 3.1.2. The statement is clear for p; = 1, soletn > 1.

1. By definition p,_; is an element of TL,_, in particular, it is expressable by

k
DPn-1 =70 + Z Yibi
i=1

where the y; € C(v) are some coeflicents and the b; are non-empty words in
the generators Uy, ..., U,_5. Since the inclusion from 7L,_; < TL,, given
by x— xuUl,maps U; » U;fori=1,...,n—2,also
k
By = (uet U DUt (ot U 1) = YoUn1 + ) 7i7(bi U DU, (b U 1)

i+j=1
i,j20

is a linear combination of non-empty words in the generators Uy, ..., U,_1.
In particular, B, is an element of the subalgebra of TL, generated by the
elements Uy, ..., U,_1 as an associative algebra. So is p,,_; — 1 by induction
hypothesis. Moreover, by using (3.2) also

[n—1]

pn—1=(pPu-1UD)—1- (1] (Pu-1 U DUp—1(pp—1 U 1)
[n—1]
=(pn1-DHul- B,
[n]
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is an element of that subalgebra, i.e. p, satisfies the first property.

2. Assume by induction that the second property is true for all U;, p; with i </
and/ < n. Ifi < n -1, then (3.2) yields that

[n—1]
n]

puUi = (pp-1 U HU; - (prar U DUy (pp U DHU;

[n—1]
n]

(Pro1 U DU—1(pp Ui 1) =0,

= (PpruDHW L) -
[n—1]

[n

(P11 U DUy (pp—r U 1)U LD

= (pu1U;u 1) —

since U; = U; U 1 under TL,—, — TL,,. Similarly U,p, is 0. What is left to
show is the equation p,U,_; = 0 = U,_1p, and by symmetry, it suffices to
show that U,,_1p, = 0.

The first property applied to p; and the second to p; imply together
pi-pjul=pipjul-1)+p;=p; Vi<n,j<i. (3.3)

Moreover, applying (3.2) and using [2] — {Z:ﬂ = % yields

-, a4

hence combined with (3.3), the equation

Un-1pn = | [\ =

- C
=2&C

—E—

holds. In particular, p, also satisfies the second property.

The first and the second poperty imply, that 1—p,, is a unit element in the subalgebra
generated by Uy, ..., U,_1 as an associative algebra, in particular, 1 — p, is unique.
But then also p, is unique. O

With these characterization it is easy to identify p, as the element z; where
A = (n) is the maximal partition of n.

Corollary 3.1.4. p, equals the minimal central idempotent zy).

Proof. Tt is sufficient to show that the element 7, satisfies the two properties of
Proposition 3.1.2. By Remark 3.1.3 it is actually enough to consider the second
property, since z(, is non-zero and idempotent. Now § ) is the one dimensional
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TL,-module spanned by the tableau /™, which implies that d = d(™,i) = -1
for all i, hence a; = 0, where a, is defined in (2.17) and d(1”, i) in (2.15). In
particular, (2.20) implies that all generators U; act by 0 on S ,). Since multiplying
with z(,) corresponds to projecting onto the S (,)-isotypical component and since
Z(n) 1s central, this already implies the second property. m|

Following (CH15, Section 2.14), the next step will be to express path idem-
potents in diagramatic language. They are the main ingredient to define analogs
of the Jones—Wenzl projectors corresponding to 4 # (n), which will be done in
Section 3.1.3, and moreover they are also the main subject of Section 3.2.1.

Section 3.1.2 Path idempotents

Now that the projection onto S, is expressed in terms of diagrams, a natural idea
would be to express the other projections onto the S y-isotypical parts in diagrams
as well. However, the case for 4 = (n) is “easier” as for general partitions A €
Pary(n), already the basis of S, consists only of one element, namely the only
standard tableau of (n). Therefore to define higher order Jones—Wenzl projectors,
which will be postponed to Section 3.1.3, it would be a good idea to define first
an analog of the orthogonal projection §; — Ct in terms of diagrams, where ¢ €
Std(4) is a basis element of S ;. This is exactly the outline of this section. Following
(CH15, Definition 2.17), a definition of elements p; is given in the beginning of this
section, then a couple of properties are proven, to show in the end of this section,
that p, actually corresponds to the orthogonal projection S ; — Ct.

A standard tableau ¢ in Std(1) will always be identified with its path in the
branching graph B,. The path 7 has always an extension ¢* of shape (1; + 1, A3)
and if 41 > Ay, it also has the extension 7~ of shape (41, A> + 1). Moreover ¢’ was
the subpath of ¢ of length n — 1.

First the coefficients of the later defined path idempotents are defined:

Definition 3.1.5. Let ¢ € Std(n) be a standard tableau. The coefficent f; € C(v) is
defined by the following recursive rule:

o [fn =1, then the coefficient f; for the unique t in Std(1) is defined to be 1.
o [fn>2, fiissaid to be
_ s ift=1",
Sz {%fm ift=1",
where k = 1] — Ap and A = Shape(t’).

Remark 3.1.6.

1. TL, was only defined for n > 1. Though it seems a bit strange, for the
sake of the next definition, it is convenient to formally set 7Ly := C(v) and
to identify TL(y with the unital algebra generated by the “empty” diagram.
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In this setting the Oth Jones—Wenzl projector py is defined to be the empty
diagram with coefficent 1.

2. Similar as p, was illustrated by and because the diagramatic ar-
guments will get more complicated in the future sections, also an element
x € TL, x, will be illustrated by a grey box x = = x ' with n incoming and

k outcoming strands.

The map TL, — TLy, induced by flipping diagrams vertically was denoted
by x — X. With this notation and the above remark in mind, it is possible to define
elements p, € TL, indexed by paths ¢ € Std(A4):

Definition 3.1.7. Let t € Std(n) be a path. The element p; € TL,, is defined by the
following rule:

e Forn=1andt e Std(1), p; is defined to be 1 € TL,.
o [fn > 2, assume that Shape(t’) = A with k = A1 — Ay and that py is defined

fort" and satisfies py = fy - xprX = fy - , where x € TL,_1 x and f; is

X

defined in Definition 3.1.5. Then we define p; by

wxw ' | T |
p=f -t 1, ift=¢", andp, = f,- (=11 [ , ift=1".
3.5)

Remark 3.1.8. 1. These elements p, will turn out to be the wanted path idem-
potents. However, it is not known yet that they are idempotent, likewise till
idempotency is proven, the name path idempotent shall not be used.

2. Substituting (3.2) into (3.5) yields the reccurence
prUl=pps+pr. (3.6)

3. If a simple transposition s; is not admissible for a path r, i.e. if the tableau
s;(r) is not standard, it is not hard to check that

Uipr =0 =p, Ui, 3.7
which is left as an exercise to the reader.

Example 3.1.9. 1. Let 4 = (n) and ¢ be its unique standard tableau. Then p;,
equals to = pn.
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2. Let A = (n—1,1) and let ¢ be the standard tableau with entry i € {1,...,n}
in the second row. The corresponding path and its path idempotent are illus-
trated in Figure 4.

Figure 4: A path ¢ of shape (n — 1, 1) and the element p;.

Idempotency of the element p, can directly be shown by using its definition:
Lemma 3.1.10. The element p, is idempotent, i.e. p> = p,.

Proof. Let by Definition 3.1.7 the element p; be given by f; - xpiX € TL,. We first
show the following equation by using induction over n:

B 1
PkXXPk = — Pk (3.8)
fi

Proof of the equation (3.8). For t € Std(1) (3.8) is clearly true. Now assume for
pr = fr - ypiy € TL,— that (3.8) holds, i.e. assume that

1

DPkYYPk = - Dk- (3.9)
f,/

There are the following two cases:
1. If t = ¢", then fy = fy and by Definition 3.1.7 p; is of the form
pr=Jfr- U DpeGUD = fr(yU Dpei(GU D).

This implies with pgy1 = prs1(pr U 1) (see (3.3)) and with (3.9), that

Prr1i U DF U Dprrr = prsr1(pe U D U DE U D(pre U 1) pre
= Pr+1((PeyYpi) U 1) i+

1 1
= — pi+1(Pk U Dprs1 = —Picss
ﬁ/ + + ﬁ +

thus (3.8) holds for p; in this case.
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2. Now assume that + = ¢~ and let 4 = Shape(t’) with k = 1; — 1. By
Definition 3.1.7 p; is of the form

o
I
pr = fr - =11

<

So, (3.9), (3.4) and idempotency of py.; together imply that

"~ T
=L _1|=—+ [ 11 = —pi-1-
¥y : fr S (k] fi

But this is just (3.8) for p;. [ ]

Since py is idempotent, (3.8) implies that

pipi = [PXpREXpRX = fixpi® = py o

Now that the element p, is idempotent, we will call it the path idempotent
associated to .

Remark 3.1.11. We saw in the proof of Lemma 3.1.10, that pyXxp; = %pk for a
path idempotent p; = f; - xpi%. In particular, this implies, that the coefficent of 1 in
Xx is exactly 1/ f;.

The following termininology, following (CH15, Definition 2.6), may seem ar-
tificial, but actually just formalizes an easy idea. », TL,  TLyTLy 4 C TL, 4 is meant
to be the submodule in 7L, 4 generated by the set 7L,y TLyTL, 4 C TL, 4.

Definition 3.1.12. We say an element a € TL, has through-degree k, if a €
S TLo 4 TLTLy,, € TL, for k < n minimal. Similar, we say that a € TL,; has
through-degree k, if a € ), TL, yTLyTLy; C TLy . for k < n minimal.

Example 3.1.13. An arc diagram a € TL, has through-degree k if and only if it
has exactly k vertical lines, where a line is vertical if and only if its endpoints are
not on the same edge. If @ = >}, y»b is a linear combination of arc diagrams b with
v» € C(v), then a has through-degree k if and only if k is the maximal through-
degree of the summands b of a. In particular,

e the generator U; € TL, has through-degree n — 2,

e p, has through-degree n, since its coefficent of 1 is 1,
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e xin p; = f;- xpiX can assumed to have through-degree k, since py annihilates
U; (see Proposition 3.1.2) and

o the path idempotent p; has also through-degree k, since py € TL has through-
degree k.

The next step is to show orthogonality of the path idemptotents p,, t € Std(n).
However, it is easier to treat first the following special case:

Lemma 3.1.14. Let s,t € Std(n) be two paths of different shape. Then p;ps = 0.

Proof. By Definition 3.1.7, p;p; is of the form

PiPs = fufs - XprXypay (3.10)

and without loss of generality, & is smaller than d. The element x is expressable as
x = Y,; xix;, where x; € TL, 4 and x, € TL,;; and moreover each x’ p; Xy decomposes
as

X;piXy = Z vib;, where y; € C(v) and b; € TL,.
i

Since py € TLy and x; € TLyy, it is clear that every summand b; is of through-
degree at most k. But k < d implies then that, every b; is a linear combination of
non-empty words in the generators Uy, ..., Us_1, i.e. the coefficent of 1 € TL; in
b; is 0. By the second property in Proposition 3.1.2, this implies that b;p; = 0, and
hence xpiXyp; = 0. Substituting this into (3.10) results in

1

pips = fifs: (Z xixﬁpkiypz]? =0. o
Orthogonality of ps and p, for Shape(#) # Shape(s) and idemptotency have the
following important consequence:
Lemma 3.1.15. Let T be an extension of t € Std(n). Then p;pr = pr.
Proof. Let T € Std(n + k) for k > 1. We proceed by induction over k.

1. If k = 1, then let p, correspond to the other extension 7 of ¢ (if T does not
exist, set pr = 0). Then the equation p.pr = 0 holds by Lemma 3.1.14, since
7 and T are of different shape (if T does not exist, p.pr = 0 holds anyway).
In particular, it follows by using (3.6) and Lemma 3.1.10, that

ppr = (P + pr)pr = P7 = pr-
2. If k > 2, then induction hypothesis and the above case together yield

pPr = (pipr)Pr = PT'PT = PT* m|
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Now general orthogonality follows easily as a consequence of the previous two
statements:

Corollary 3.1.16. The elements p;,t € Std(n) are pairwise orthogonal.

Proof. Let t, s € Std(n) be two different paths. If they are of different shape, then
p:ps = 0 holds by Lemma 3.1.14. On the other hand, if they are of same shape,
there exist subpaths 7 of ¢ and o of s of different shape, since ¢ and s are different.
Therefore, using Lemma 3.1.15 and Lemma 3.1.14 gives

DPiPs = PitP<PoPs = Pr -0 ps = 0. m|

Now that orthogonality is known, completeness of the path idempotents is still
missing. The following proposition summarizes the situation, see also (CHIS,
Proposition 2.19) and (CH15, Theorem 2.20):

Proposition 3.1.17. The elements p,,t € Std(n) are pairwise orthogonal idem-
potents and sum up to the identity 1, € TL,, i.e. they form a complete set of
orthogonal idempotents.

Proof. The only thing to show is that 1 = }}; ps. since by Lemma 3.1.10 p; is
idempotent and by Corollary 3.1.16 the elements p,,t € Std(n) are pairwise or-
thogonal. To do so we proceed by induction over n. The case n = 1 is clear,
since there is only one path s € Std(1), which equals p; = 1. If n > 2, induction
hypothesis gives the decomposition

TL,-1 3 1,1 = Z Pr-
reStd(n—1)

If r(¢, n) denotes the row index of 7 in ¢, then (3.6) implies

TL,3 1, =1,-1ul= Z prul= Z (pr+ +pr) = Zpt+ ZP:-

reStd(n—1) reStd(n—1) 1€Std(n) 1eStd(n)
r(t,n)=1 r(t,n)=2

But since since (¢, n) is either 1 or 2 for all ¢ € Std(n), this already means that

ln = Z pt' O
teStd(n)

Now that the elements p, form a complete set of orthogonal idempotents, there
are a few technical lemmas left to prove in this section. We start with the following
property, which is shown by only using the definition of the path idempotents:

Lemma 3.1.18. Let s,t € Std(A) with A € Pary(n), such that s;(s) = t for some i.
Then the following equation holds:

Ui(p: + ps) = (p1 + po)U;, . (3.1D)
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Figure 5: A path ¢ and s = 5,1 (?).

Proof. Assume thati =n — 1 andletr =t = 5" be the maximal common subpath
of ¢ and s of shape u = A", The situation is illustrated in Figure 5. With
d = u1 — pp = A1 — Ay, Definition 3.1.7 states that p,, p; and p; are given by

x i
L1 d+1]
pr=fr, = fi0——

| [d + 2] =1 —\

- —

Applying the recursive formula (3. 2) for pas1 yields

\ |
[d+1] [d] \\ [d] d]2
[d+2] [d+1/ \ d+1]// [d+1]

pt:fr

sl | B.12)

Now adding p; to (3.12) and simplifying imply that ]%r(pt + ps) equals to

[d] N [d]
[d+1][d+2] [d+1
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Therefore mutliplying %(p, + p;) from the left with U, = % gives

\x\ U

[d]? [d] )

N AN [d+1[2
d+1][d+2] [d+1

\ d+2] ‘2

]Tr n-1(ps + pt):([

« U
N

NN

|
L1121 [d] \ L

|
[d+2] ~ [d+2]
-\\ NEA

It is clear that (3.13) must be vertically symmetric, so also JITr(pS + p)U,-1 is of
this form. Now this argument generalizes to 1 < i < n — 1, since Definition 3.1.7

Tk

only uses the dashed Jones—Wenzl projector '"7_]. sitting in the middle. m|

Orthogonality and (3.7) have the following consequence:

Corollary 3.1.19. Let t, s € Std(n) be two different paths. Assume that s; is admis-
sible for s and that t # s;(s). Then p,U;ps = 0 holds.

If s; is not admissible for s, then the statement is also true by (3.7).

Proof. Let w = s;(s). Then Lemma 3.1.18 and Corollary 3.1.16 imply together
that

pUips = pUi(ps + pw)ps = pi(ps + pw)Uips = 0. O

A path ¢ € Std(4) can also be identified with a sequence of signs €[(?), . . ., €,(?)
in {1}, where €(¢) = 1, if i is in the first row and ¢;(f) = —1, if i is in the second
row of ¢. Alternatively €;(¢) encodes the ith step of ¢ seen as a path in the branching
graph (Figure 2), where —1 corresponds to a step to the left and +1 to one to the
right.

To show that the path idempotents correspond to the projections S, — Cr and
also for Section 3.2.1, another technical result is needed, which can also be found
in (GW93, Section 0). For readability we will write p, instead of p, L 1.

Lemma 3.1.20. Let t € Std(w) and p € Pary(n — 1), such that t~ exists and let
k= —po.
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1. If €,1(t) = 1, then the following equations hold:

~ (K] and ps+ ——[k] U
Pr [k+ I]Pz n—1Pt Prt = Pt Ik + I]Pt n—1Pt-

2. If ,-1(t) = —1, then we obtain

[k + 2] [k + 2]

P = pi— ——piUn_1ps and py+ = TS

k+1] ——p:Up_1ps.

Proof. 1. If €-1(t) = +1, then we are in the first situation of Figure 6. By

t t

r+ t

Figure 6: €,-1(¢#) = +1 on the left and €,-(f) = —1 on the right hand side.

Definition 3.1.7, py is of the form py = fyxpr—1X and consequently py, p;
and p;- are given by

o B | /\r | /
pr = fr w = fr ﬁ [ & land p = fp - [k n 1 !\
Y ‘

Now p;U, -1 p; looks like

thn—lpl:ft% ‘ i

since px(pr—1 U 1) = py and since the subdiagram py_;xXpi—; collapses to
f-'pr_1 by Remark 3.1.11. But this already implies the identity for p,. On
the other hand, the identity for p,+ follows from (3.6).

2. If we had that €,_1(f) = —1, then we were in the second situation of Figure 6.
Similar as in the previous case, we know that py = fyxpi.1 X, which implies
that py, p; and p;+ are of the form

= —

pr = fr L], pr

+

‘ ‘ [k+1]f E[éx” / [k +1] F:LI\/

= —fu d p+ 2
— k+ 2] == P [k+2ﬁ +




Considering p,U,_1 p; results in

[k+11% ,

Upsipr = ——= 1
PtUn-1Dt [k+2]2fl

which implies the equation for p;+. As before, the identity for p,- follows
from (3.6). m|

We end this section as anounced before by showing the following proposition:

Proposition 3.1.21. Let t € Std(1). Then the path idempotent p; acts on S by
fixing t and sending every other basis element s # t of S, to 0. Moreover p; acts
byOonS,ifu#+ A

Proof. Let A € Pary(n) be a partition. We prove the statement by using induction
over n. For n = 1 this is clear, since there is only one partition, one path and one
path idempotent. Now assume that n > 2 and let r € Std(1) be a path. Moreover,
let u be the shape of t' and set k = pu; — up. If 0 < A < Ay, there exists another
partition v such that

S,=5,88,

as TL,_i-modules. If otherwise 0 = A, or A, = Aj, then §, is isomorphic to S,
as TL,_;-modules. In both cases, py acts on a path s as it acts on s’, which means
explicitly that

prit=t (3.14)
and furthermore, if s,_; is admissible for ¢, this also means that
pr-Su—1(2) = 0. (3.15)
The first step is to show that also p; fixes ¢. There are the following cases:

1. Assume that €,_((#) = 1 and ¢,(f) = —1. Lemma 3.1.20 gives a description
for p;, namely

[£]

—_— /Un_ /o 3.16
[k + l]pt 1Pt ( )

Pt =
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Therefore applying (3.16), (2.20), (3.14) and (3.15) all together imply that

[£]
pl‘-t = —pt’Un—lPt’-t ’Un_l.t

(k]
k+ 1] TS

[kl
= iy (e etk 0l 051m10)

k
= ﬁa%’n_l)(\/)t. (3.17)

The condition ¢, 1(f) = 1 encodes that n — 1 is in the first row of 7 and on the
other hand ¢,(f) = 1 means that » is in the second row. This means that

dt,n—1)=ct,n—1)—r(t,n—1)—(c(t,n) —r(t,n) =41 -1 - (1 — 2)
=1 —/12+1 2/.11—(/.12+1)+1 Zk,
which implies with (2.17) that af: | \(v) = U5l Substituting this into
(3.17) shows that p,.t = t.

2. Now assume that €,-1(f) = 1 = ¢,(¢). This means d(t,n — 1) equals —1
and moreover it means that a% n—1)(V) = 0, hence U,_; acts by 0 on t.
Lemma 3.1.20 describes p; by

= ;) — [—k] /U ,
Pt = Dy [k + l]Pt n—-1P¢»
implying
[k] (k]
t=ppt— ———p,U,_1ppt=t— ——prU,_1.t=1t.
Dt Dt [k + I]Pt n—1pPt [k + 1]Pt n-1
3. The cases, where €,_1(f) = —1 and ¢,(r) = +1, work out in a similar way;

they are left as an exercise to the reader.

Now that p, is known to fix the basis element 7 € §,, let s € S, for u € Pary(n)
be another basis element different from ¢. Since p; fixes s and since p; and p; are
orthogonal, it follows easily that

pi-S = pips.s = 0.s = 0.
In particular, the statement is shown. O

Having the path idempotents p; properly introduced, it is time to turn the focus
to the so-called higher order Jones—Wenzl projectors. The next section is devoted
to define these and to characterize them by unique properties, as we did for the
Jones—Wenzl projector in Proposition 3.1.2.
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Section 3.1.3 Higher order Jones—Wenzl projectors

Following (CH15, Definition 2.23), we define the higher order Jones—WenzI pro-
jectors corresponding to a partition as the sum of its path idempotents:

Definition 3.1.22. The kth higher order Jones—Wenzl projector is given by py, =
Drestd(1) Pr» where A = (A1, A2) € Pary(n) is the unique diagram with Ay — A3 = k.

The first goal is to give a nice characterization of the p, x, which can be found
in (CH15, Theorem 2.26). These properties are very similar to those of the Jones—
Wenzl projectors in Proposition 3.1.2 and proven mutatis mutandis.

Theorem 3.1.23. The higher order Jones—Wenzl projectors p, j in the algebra TL,,
are uniquely characterized by the following properties:

1. The element p, € TL, has through-degree k.

2. Foranyd and a € TLy,, of through-degree j < k the equalities ap, = 0 and
DPnka = 0 hold.

3. Ifa € TLy,, is of through-degree k, then we obtain that ap,; = a + b, where
b € TLy, is an element of through-degree j < k.

Remark 3.1.24. Elements g, satisfying the above three properties are always
idempotent: The third property and the first imply

Gy = quk + b,
where b is of through-degree j < k. Multiplying with g, ; from the right and the
second property let us deduce
0= Gy 4dnj = Gnkdnj +bdn.j = bgnj = b +c, (3.18)
where c is of through-degree i < j. In particular, » must be 0 and hence qfl’k = Gnk-
Proof of Theorem 3.1.23. It is easy to see that p,,; satisfies the three properties:

1. The first property follows by definition, since pnx = Xsesid(r) Pr and by Ex-
ample 3.1.13, p; has through-degree k.

2. The second property follows from the fact that U;py = 0 = piU; for all
U; € TLy, see Proposition 3.1.2.

3. The third follows from a = al, = Z’]’.zl apn,j = ZIJ‘.ZI apy,j, where we used
Proposition 3.1.17.

Suppose that some element e satisfies the three properties. If j < k, then the
second property for e implies that p, je = 0. If j > k then the second property for
Pn,j implies p, je = 0. Now both together imply the equation

n

e=c¢el, = Z epPn,j = ePn- (3.19)
j=1
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On the other hand, the third property for e implies ep,x = pux + b, where b is of
through-degree j < k. This and (3.19) gives

e =epui =Py = (Puk + D)Puk = Py = Pk- O

Corollary 3.1.25. The idempotent p, . corresponds to the minimal central idem-
potent 7, where 11 — Ay = k. In particular, p,\ is central.

Proof. Proposition 3.1.21 states, that the path idempotent p; for ¢ € Std(4) acts on
Sy by fixing 7 and sending s #  to 0. This directly implies, that p,x = X esiacr) Pr
acts as the identity on S ,. Since the identity z; in End(S ,) is unique, we obtain
21 = Pnk- O

Corollary 3.1.26. If Shape(t) # Shape(s), then p,TL,ps = 0 is trivial.

Proof. Let A = Shape(¢) and d = A; — 1. Then Proposition 3.1.17 and Corol-
lary 3.1.25 imply

PiTLyps = pipanTLyaps = piTLyapanps = 0. |

The chosen aproach of this section makes it possible to get more insight con-
cerning the involved coefficents. This is carried out in detail in the next section.
We stress that the next section does only use diagramatic arguments, however it
tells the same story as (GW93).

Section 3.2 Specialization at a root of unity

In this section, we let ¢ € C* denote a fixed primitive 2/th root of unity, where [ is
at least 3, i.e. we assume that g # +i. We need this in this section, since otherwise
[2] = 0, so nearly all proofs of this section were not valid.

Now TL,(g) is not semisimple anymore, compare (HST15a, Proposition 5.1),
so not all Jones—Wenzl projectors are present. Already some path idempotents
cause problems, since their construction involves Jones—Wenzl projectors and quan-
tum integers [k], which are not always well-defined at v = q.

We start this section by specifying, what well-defined elements in 7L,(q) are.
With more caution than in Section 3.1 we try to examine the relation between var-
ious path idempotents and also new idempotents, which are not necessarily path
idempotents. This is done in Section 3.2.1. After that it is possible to give in Sec-
tion 3.2.2 a description of the minimal central idempotents modulo the Jacobson
radical of TL,(v), which are idempotents, that are central up to elements in the
radical and minimal with that property. This is the main result of this section.

The statements in this section can be found in (GW93). Although our proofs
are motivated by those in (GW93), in some cases they are not entirely the same.
Infact, we only use diagramatic arguments. However, we stick to the naming of the
statements given in (GW93).
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We start by clarifying, what is meant by evaluable. Therefore let C[v], denote
the subring of C(v) defined by

Chvlg = {g; f8€Clv],g(q) # 0},

which is the subring of all rational functions, which can be evaluated at v = g.

Definition 3.2.1. (TL,), is defined to be C-subspace of TL, consisting of the C[v],-
span of words in Uy, ..., U,_1. The elements in (TL,), are called evaluable at q.

Since TL, is also a C-algebra, and (TL,), is closed under multiplication, (TL,),
is actually a unital C-subalgebra of TL,. The next proposition, which is actu-
ally (GW93, Proposition 0.1) and which we will not prove here, justifies Defi-
nition 3.2.1:

Proposition 3.2.2. The map defined from (TL,), to TL,(q) by sending U; to U; and
v to q induces a surjective morphism of C-algebras.

The morphism above is called the evaluation morphism and for an evaluable
element x € TL,, x(q) denotes the image of x in 7L,(q). The following lemma,
needed for later results in Section 3.2.2, relates dimensions between TL,(q) and
TL,; it can also be found in (GW93, Proposition 0.1).

Lemma 3.2.3. Ife and f are evaluable idempotents in TL,, then
dimc(eTL,f)(q) = dimcy,) eTL, f.
Proof. Assume that there is a linear relation in e7L, f given by
yibi + -+ yibe =0,
where y; € C(v) and where the b; are words in Uy, ..., U,—; € TL,. By multiplying
with a sufficiently high power of (v — g) a relation of the form
Yiby+ - +yibp =0 (3.20)

is obtained such that y; € C(v),. This is actually a linear relation in e(TLy,),f.
Without loss of generality, at least one coefficient y; can be assumed not to be
divisible by (v — ¢g), since otherwise dividing (3.20) by (v — g) would still yield a
linear relation of the above form in e(TL,), f. Therefore, evaluating (3.20) atv = ¢
results in a non-trivial linear relation in (eTL, f)(q), which means that

dimg(eTL,f)(q) < dim@(v) eTL,f. (3.21)
But (3.21) does not only hold for the idempotents e and f, but also for the pairs of
idempotents (1 —e, f),(e,1 — f)and (1 — e, 1 — f). In particular, (3.21) implies
dimc TL,(q) = dimc(eTLy f)(q) + dimc(eTLn(1 — f))(g) + dimc((1 — )TL, f)(q)
+dimc((1 — e)TLa(1 - /))(g)
< dimc,) eTL,f + dimc(,) eTL,(1 — f) + dimc,)(1 — e)TL, f
+ dimgg)(1 — e)TL,(1 = f)
= dimc(v) TLn. (3.22)
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If (3.21) was strict, also (3.22) would be strict. But by (3.2.2) the inequality (3.22)
actually has to be an equality, yielding that (3.21) needs to be an equality. O

Now that we know, what evaluable elements are, the next step is to obtain an
understanding of relations between idempotents. The following definition is quite
standard:

Definition 3.2.4. Two idempotents f and e in a ring R are called equivalent, if
there exist elements u,v € R, such that e = uv and f = vu.

As the name suggests, this is an equivalence relation. This definition is justified
by the following lemma, which is left as an exercise to the reader.

Lemma 3.2.5. Two idempotents e and f in a ring R are equivalent, if and only if
Re = Rf as left R-modules.

With this in mind, following (GW93), we refine the definition of equivalence:

Definition 3.2.6. Two evaluable idempotents f,e € TL, are called equivalent, if
there exist evaluable elements u,v € TL,, such that e = uv and f = vu.

Often it is necessary to consider a set of pairwise equivalent and evaluable
idempotens. Such a set actually corresponds to a so-called system of matrix units:

Remark 3.2.7. Letuy, ..., u; be a set of evaluable pairwise equivalent idempotents
and let the elements u;; and #;; implement the equivalence between u; and u;, i.e.
assume that uj;u;; = u; and u;juy; = u;. By setting Uij = UWilljlUjUj, the set

{u;j}1<i j<k actually satisfies the property
uuj = u; =: u forall 1 <i, j <k,
Moreover, it is easy to check, that one can actually assume
uijuj = uy forall 1 <17, j,I < k. (3.23)

A set of evaluable elements {u;;} satisfying (3.23) is called a set of evaluable ma-
trix units. Of course this is motivated by the matrix units E;; € M,,C.

As now the termininology concerning evaluability and equivalence is specified,
before proving a bunch of technical statements in Section 3.2.1, a last definition is
needed. The next definition, following (GW93, Section 1), will be used to identify
the future evaluable path idempotents:

Definition 3.2.8. 1. A partition A € Pary(n) is called critical, if w(d) := A, —
Az + 1 is divisible by | and the mth critical line in the branching graph is
the line consisting of all partitions A, with w(1) = ml. Likewise a tableau t
of shape A is called critical, if A is critical. We refer to the largest proper
critical subtableau of t (if it exists) as the critical subtableau of t.
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2. If a tableau has its critical subtableau r on the mth critical line, then its
conjugate 1 is defined to be the tableau corresponding to the path obtained
from t by fixing r and reflecting t \ r at the mth critical line. For any tableau
the element pyy is defined to be py;) = p; + p; where p; := 0, if t does not
exist.

3. A critical tableau t is called evaluable, if p; is evaluable and a non-critical
tableau t is called evaluable, if py, is evaluable.

4. Atableaut is called regular, if any two successive critical diagrams on t are
on different critical lines.

There is only one instance, where ¢ has a proper critical subtableau, but 7 does
not exists, namely if the critical subtableau ends on the first critical line and 7 ends
on the second.

Example 3.2.9. The branching graph with vertical dashed lines as critical lines for
[ = 5 is illustrated in Figure 7, together with a critical regular tableau drawn by
dashed lines, an extension of that critical regular tableau and its conjugate.

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I |
| |
| |

Figure 7: A path and its conjugate.

Now the technical part of this thesis starts.

Section 3.2.1 Evaluable idempotents

This section mainly contains statements to prove Proposition 3.2.26 in the next
section. Our goals are

1. to show that regular critical tableaux are evaluable (Proposition 3.2.17) and

2. to construct new evaluable idempotents out of old ones, see Lemma 3.2.12,
Lemma 3.2.14 and Lemma 3.2.18,
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while keeping track of equivalence relations between the involved idempotents. As
already mentioned, the proofs are often motivated by those in (GW93, Section 1)
for the corresponding statements. However, the proofs presented here do not use
the representation theory of TL, but diagramatic arguements, which makes most
them more technical.

We start by regarding a “baby” case:

Proposition 3.2.10. Let r = (1) = AV — .. = A® = Q) be a tableau with no
proper critical subtableau, i.e. w(A") < [ for all i. Then r is evaluable. Moreover,
if 7 is also such a tableau of same shape A, then p, and p; are equivalent.

Proof. We use induction over n and use Lemma 3.1.20 to show that p, is evaluable.
For n = 1, the path idempotent is just 1 € 7L, so there is nothing to show.

1. Suppose that €,-1(r) = 1. By induction the idempotent p,- is evaluable and
non-zero. But Lemma 3.1.20 implies then

L) P (2o |
Pr k] PrYUn-1Pr Pr = Dr k]

where k = /1(1”_1) - /1(2"_1) +1 = w(A”"D). Thus p, is evaluable. Since p, is
non-zero by induction hypothesis and since p,» U, p,» and p,» have different
through-degrees in TL,,, also p, is non-zero.

prUn_1pr,

2. If €,-1(r) = —1, the second case of Lemma 3.1.20 applies, thus

[k+ 1] [k+ 1]
= PrUn-1pr ot pr = pp — ———pprUp_1py,

p =
’ (k] (k]
where k = A7V = AP + 1= 20" — 20 hence k + 1 = w(2"?) < L.
So again, p, stays evaluable, supposed p,~ is evaluable and similar as in the
first case p, is also non-zero if p,» is non-zero.

What is left is to show equivalence between two tableaux satisfying the assump-
tions. But if 7 and s are two evaluable tableaux of the same shape A, it actually
suffices to consider the case s = s;(f) for some admissible transposition s;, since
being equivalent is an equivalence relation, hence transitive. Moreover, only the
case i = n— 1, where n = A + A is treated here, the general case follows from this
one. The situation is illustrated in Figure 8. Let r = ¢ and let p,, p; and p, with

1

Figure 8: A path ¢ € Std(2) and s = 5,1 (?).

Definition 3.1.7 be given by
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|
pr—fr d » Ps =
i

. d+1 d+1 d+1
Now, if u = L ;]]psUlp, and w = {d:Z}th,py, then uw = [6[1++2]%d]psU,p,U,ps is of

the form

s ld + 1][d]
" [d +2]?

d+1] ... f’[d+1]///

==X

where we used that p, is idempotent, (3.4) and Remark 3.1.11. One can also show
that wu = p; by a similar argument. Furthermore both u# and w are evaluable, since
p: and pg are, and since s and ¢ are to the left of the first critical line, which means
that [d], [d + 1] and [d + 2] are non-zero and evaluable. ]

The previous lemma just states, that to the left of the first critical line everything
is normal as in the generic case. Actually, the proof has the following consequence,
which could be stated early in this theorem:

Corollary 3.2.11. Ift and s are of same shape, then p,TL,p; is one dimensional.

Proof. In the proof of Proposition 3.2.10 a non-zero element u € p,TL,p; was
constructed, in particular, p,TL, p; is at least of dimension one. But since TL, =
o, +.s PrTLyps and since the dimension of 7L, is given by the number of pairs of
paths of same shape (see Remark 2.2.6 ), this already implies that p,TL,p, must be
of dimension one. o

Now the first problems are to expect at the first critical line. The next lemma
(cf. (GW93, Little Diamond Lemma)) states the existence of new evaluable idem-
potents which are not path idempotents.
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Lemma 3.2.12 (Little Diamond Lemma). Let r be an evaluable critical tableau
of shape u € Pary(k) and set A = (u; + l,up + 1) and d = py — up. Let s be the
unique tableau ending in A and extending r, such that t = s(s) is standard (see
Figure 9). Then there exists a 3 X 3-system of evaluable matrix units in TLy., with
diagonal units equal to [2]p;, p;Ur+1 and p,([2] = Uy 1) prs2.a = pr([2]= Urs1)prs)-
In particular, pypri2.a = prs) is evaluable.

We warn the reader, to proof consists of some tedious calculations.

Proof. As done often before, by abuse of notation we write p, instead p, Ll 1.
Moreover, let 5§ = si+1(s). We will prove the lemma only for the first picture in

Figure 9: Paths ¢, s = s;(¢) and 5 = s311(s).

Figure 9, the second case works analoguously.
The first thing to do is showing that [2]p, and p, Uy are equivalent; therefore
let # and w be defined by

u=(~-p)UrUks1prand w = p, U1 Ui(1 = py).

They are both evaluable, since p, is evaluable. To show equivalence between [2]p,
and p, Uy it is sufficient to prove the following equations:

d—-1
[ ] ]PrUk+1, (3.24)

ld=1]
uw = [2] ]

Proof of the equations (3.24) and (3.25). Starting with (3.24), Lemma 3.1.20 and
the fact that Uy, commutes with p, € TL; imply

wu =

Dz (3.25)

[d] [d]
Uir1psy Ups1 = mUkarUkprUkH = mPrUkHPr, (3.26)
This and Lemma 3.1.20 make
[d + 177
PrUkc Ukpr U U1 pr = U1 pr Uk prpr U prUgs1 = WUknps'Ukn
[d+1] [d+1]
= WprUlﬁlpr = Wprulﬁlpr, (3.27)
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hold. Moreover, (2.5) has as consequence
PrUiit UcUr U pr = 21pr Uit Ur Uk pr = 12190 Uk (3.28)
and therefore, it follows from (3.27) and (3.28), that

wit = p Ui 1 Ur(1 = p)Ur U1 pr = prUsit Uk Ui U1 pr = prUsi1 Urpr U Uiy pr
[d+ 1] [d-1]
= 219 Uit — —— p,Ups1 = ——— p, U1,
[(21prUk+1 ] PrUk+1 ] PrUk+1

which is just (3.24).
Now let w = t”. Since p,p,» = p, and p,» — p, = p, by (3.6) and moreover,
since p,» € TLy—; commutes with Uy and Uy, we obtain

uw = (1 = p)Ur U1 pr Ui 1 Ur(1 = py) = [21(1 = pr)Urpr prpr Ug1 Ur(1 — py)
(pr — PIUpr U1 Ur(pr = pr) = 121p0UrPrUi+1 Ukpw

PoUk(Pr — Po)Uik+1Ukpuw

PoUkUrs1Ukpow — 21pw Ui o Uk+1PwUkPo

PoUiPow — 21p0UrpwUsk+1P0 Uk Pw- (3.29)

Lemma 3.1.20 implies p,ugp, = % pr and therefore from (3.29) it follows

[d-1] [d - 117 [d-1] [d-1]
w = [2] @ P DJWW Uke1pr = [Z]W (pz/ T P Uk+1Pt’)
[d—1]
=02 ,
(2] [d] Pr
where Lemma 3.1.20 was used for the last equality. But this is just (3.25). [ |

Now [2]p; and p,([2] = Ug+1)pni are known to be equivalent. With

w = (2] = U DprUk(1 = pr)ps and &t = p(1 — p)Ur([2] = Ugr1)pr,  (3.30)

the elements [2]p; and p,([2] — Ui+1) pn i Will be equivalent by showing the follow-
ing equations:

o d—1][d +2]

i = 21 (3.31)
d—1][d+2

Wi = %mz} — U (332)

Proof of the equations (3.31) and (3.32). Lemma 3.1.20 implies that

[d-1] , [d-1]
UiprUi = Ui prr — ———pr Uk-1pr | Ux = [21Urp,. — ——pr U,
PrUk k|p [d]p klp)k[]kp [d]p k
[d+1]
== p.U 3.33
] pr Uk (3.33)
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and Lemma 3.1.20 that
[d-1]
[d]

PoUkPw = pr- (3.34)

So together (3.33) and (3.34) yield

[d+1]
p(1 = p)Urp U1 = p)p: = pipoUkprUkpwp: = WptpwUkpr’ PwPt

[d+1][d - 1] [d+1][d - 1]
= Tptpﬂpt = T

where we used the second part of Remark 3.1.8 for #,#',w = ¢’ and ' = «'.
Moreover, p, commuting with [2] = Ug,1 and ([2] = Uss1)? = [2]1([2] = Ugs1) imply

aw = p(1 = p)Ur([2] = Uk+1)pr([12]1 = Ur+1) prUr(1 = pr)p:
- [2](p,(1 — pOUR] = Ue)pyUn(l — pr)pt)

pi, (3.35)

- [2]([2]pt(1 — pOU UL = ppy = pil = pUkUser prUs(1 - p»pt).
Substituting (3.35) and (3.25) shows now
o d-1d+11 1 \_ d-1d+1]  [d-1]
i = [2] ([2] P o w) - 2] ([2] T p,)
[d—-1][d + 2]
[dP?

which is (3.31). The last equation to show is (3.32). Applying (3.11) and using
Dt = pi(ps + py) results in the equality

=[2]

I

PiUK(2] = Uk pr = pi(ps + pUK(2] = Uis1)pr = piUik(ps + p)([2] = Uks1)pr
= prUrps(12] = Uk 1)y (3.36)

since p;Ui+1 = 0 by 3.7 and since p;p, = 0, because 7 is not an extension of r. The
equations p; = ps(ps + ps), (3.11) and (3.36) imply together

PiUK2] = Urs)pr = piUkps(12] = Uks1)pr = pUi(ps + ps)([2] = Urs 1) pr
= pUr([2] = Ui 1)(ps + p3)pr
= piU([2] = Urs1)PrPi+2,d5 (3.37)

SINCE Pri2.d = Direstd(r) Po Dy Definition 3.1.22. Observe also that
Pr(L = pr)Prs2,d = PwPk+2.d = Pr Pk+2.d = DiPk+2.d> (3.38)
which implies with (3.37) and the fact that py.2 4 is central idempotent, that
PrU2] = U+ 1)pr = piUr([2] = Uk+1)PrPi+2.d
= PiPi+2.4Uk([2] = U 1) PrPi+2.d

= pr(1 = ppis2,aUr([2] = Urs1)PrPrs2,d
= poUk([2] = Uk+1)PrPi+2,d- (3.39)
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Similar to (3.26), Lemma 3.1.20 implies

B [d-1] _d-1] ,
Urpo Ui = Ui (—[d] Dr Uk—lpr’) Uy = T prUy. (3.40)

Then (3.40) and (3.39) together yield

Uip:Ui(12] = Uk 1)pr = UkpoUi([2] = Uk 1) PrPis2.d
_d-1]
~[d]
_d-1]

Wpr' Uip-(12] = Uiks1)PrPics2.d5

which also implies with Lemma 3.1.20 that

d-1
PrUpiU([2] = Ure1)pr = %PrUkPr(D] = Ui+ 1)PrPk+2.d
[d-11[d+1]
- [d]?
B [d-1][d + 1]

[d]?

PrU(2] = Urs1)Prprs2.4

Ps([2] = Ugs 1) PrPk+2.d

Ps (2] = Us )Py + P5)Pk+2.d-
(3.41)

Lemma 3.1.20 also implies

[d+ 2]
[d+ 1]

Py ([2] = Uks1)py Prs2,a = ([2] - )Pspk+2,d = DsPi+2d-  (3.42)

[d+1]

Moreover, with psUy+1 ps = —=psUk+1ps+ U1 ps from (3.11), Lemma 3.1.20 gives

(2] = Urs1)ps (121 = Uis 1) P35 Prs2,d
= ([2] = Ur+1)ps(U2] = Ur+1)Pspi+2.a = —([2] = Ure1)PsUr+1P5Pk+2,d
= (2] = Urs D)PsUks1P5Pks 2,0 + (2] = Urs 1) U1 ps
[d + 2]
= ([2] = Ur+1)Ps U105 Pr+2.a = ([2] = Uk+l)mp§pk+2,d- (3.43)

Now we can deduce from (3.30) , (3.41), (3.42) and (3.43) that

wit = ([2] = Urs1)prUkpi Ui (2] = U 1) PrPis2,d

d-1][d+1

= %([2] - Uk+l)ps’([2] - Uk+l)(ps’ + pf')pk+2,d

= T([z] - Uk+l) [d + 1]pspk+2,d + mpfpk+2,d)
d-1][d+2

) %([2] — Uss1) (Ps + Ps) Prs2.ds
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which implies with (py + ps) pri2.a = PlsiPi+2.d = PrPk+2.4 that

d—1][d+2 d-1][d+2
R G C L A e %

[d]? Pr([2] = Ugs1) Prs2.ds

so finally (3.32) is shown. [ |

Since [2]p; and p,([2] — Ui+1)pis) are now equivalent ((3.24), (3.25),(3.31) and
(3.32)) and evaluable (i, w, &t and W were evaluable), also the sum

Pr([2] = Ut Dprsy + PrUket = prl21pie2.a = pr[21prs)
is evaluable and hence p;pi+24 is. m]

In Lemma 3.2.12, we saw evaluability of pis, where s = r*~ for a evaluable
critical tableau . Now the next lemma (cf. (GW93, Interpolation Lemma)) gen-
eralizes this statement; it states that whenever the critical subtableau is evaluable,
also pps is so. As the previous proof, the following proof is rather calculation
heavy.

Lemma 3.2.13 (Interpolation lemma).

Let t be a tableau with evaluable critical subtableau r.

1. pin is evaluable. In particular, if r ends on the first critical line and t on the
second critical line, then p; = py is evaluable.

2. Let s be another tableau with same critical subtableau and same shape as t.
Then pyy and prg are equivalent.

Proof. Let® — (1) = A1 — ... — A™ be the path associated to ¢ and let k < n,
such that the critical subtableau r of ¢ is of shape u = A®. Assume that r ends
on the mth critical line. Moreover, we can also assume that A is to the right of
the mth critical line (if not take 7 instead of 1), i.e. w(A®) > mi. Furthermore, let
A = Shape(?). We use induction over n — k to prove the statement. Clearly the case
n —k = 1 holds, since then p;q = p; + p; = p, U 1 is evaluable, and moreover
n —k = 2 implies that

pr = (pru Dpga or pg = (priu DA = pia),

where d = /1(1”) - /1(2") =uy + 1 —po— 1=y — uy, thus for n — k = 2 the statement
follows from Lemma 3.2.12. Therefore n — k is assumed to be at least 3 and pj, to
be evaluable by induction hypothesis. There are the following cases:

1. Assume that A? = (/1(1"_2) + 1,/1(2"_2) + 1) and assume that €,(f) = —1: The
situation is illustrated in Figure 10. Since n — k > 3, 2“2 is not critical, so
t # 5,-1(t). Therefore, it follows from Corollary 3.1.19 that p,U,—1p7 = 0
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Figure 10: A path ¢ and its conjugate f with €,(¢) = —1.

and moreover, defining the element E by E = pU,-1pjr], together with
Lemma 3.1.20 yields

D+1 -1
E = prUppr + prUp-1pp = ) + ]p,+ [W[(w()/_l)] I .

(w(A)]
Therefore (3.1.17) implies

W@+ | -1\ g _ g2
_( T T WD) JE-E
P = b +1] G- 1]
DT (D]

(3.44)

¢’ being to the right of the critical line and ¢ beeing not on a critical line,
together give ml + 1 — 1 > w(A®) = w(A"2) > ml+2and ml - [+ 1 <
w(d) < ml — 2. Therefore, (3.44) implies that pis is evaluable. The case
€,(t) = 1 is similar.

ST = VP 42,28 ) orif 4™ = A2, 207 + 2), with s defined as
the unique extension of ¢ different from ¢, then the statement for s follows
by the previous case. But then pj = pj#1 U 1 — py4 is also evaluable.

Now we turn our focus to showing equivalence. The path s can be obtained form
t by applying a sequence of simple transpositions, as usual it suffices to assume
s = s;(¢) for some i. We further assume that i = n — 1, the general case follows
from this one. Setting

u = pUipyy and o’ = pigUipis),
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and using p;U;p; = 0 = psU,p, from Corollary 3.1.19, implies
w’ = p,UipUips + psUipiUips. (3.45)

By using Lemma 3.1.20 similar as for (3.26) and applying Lemma 3.1.20 again,
we can deduce that

[w() = 1] [w() + 1]
sUi iPs = S 3.46
P Uipdips = = o twa] ¥ (5.46)

WD) = 1] (D) + 1]
gU,’ ‘U,’ 5 = = = Ses 347
PSEPEPs = 1 eyl ¢ (3:47)

where

_D@-1w@+11 o @) - 1w + 1]
W] W] W]  [w@]

Substituting (3.46) and (3.47) into (3.45) implies

uu' = cpg + Cps. (3.48)
Similarly one can show that

u'u = cp; + ¢py. (3.49)
The equations (3.48) and (3.49) have as consequence the equations

(uu’ — ¢)p; = 0 = (uu’ - c)py,
('u—2)p;=0='u-cp,
and therefore, we obtain
W'u—c)u'u—2¢)py=0=@u —c)uw —¢)piy- (3.50)

Then (3.50) together with u’uppg = 0 = uu’ pyy, because of (3.48) and (3.49), give
the two equations

(Wu—c)u'u-7)

- (Prs1 + pia) = piy (3.51)
(uv’ — c)(uu’ —¢)
- (Prs1 + Piay) = PLs)- (3.52)

Setting w = — M ith (3.51) and (3.52) imply that
prs) = w'w and py = wi',
which means that pps and ppgq are equivalent. O

As before, also the next statement has a quite technical proof. It will be used
to connect the evaluable idempotents by equivalence in the next section.
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Lemma 3.2.14. Let r be an evaluable critical tableau of shape u € Pary(k) and
set A = (u; + 1,up + 1). Consider the six extensions of r of length k + 3 which
endin (uy + 1,up +2) orin (uy + 2,u; + 1) and let t denote the left most of those
(see also Figure 11). Then there is a 3 X 3-system of evaluable matrix units in
TLy3 with diagonal matrix units [2]pig, prUk+1 and pr([2] = Ugs1)Pis2,a where
d=p —p =2 - A

Proof. We are in the situation of Figure 11, where the path r ends in y, ¢ is the
left most path ending in (u; + 1,up + 2) and £ is the right most path ending in
(u1 +2,up + 1). By Lemma 3.2.13 pyy is evaluable and by Lemma 3.2.12 p, Uy

N
>

Figure 11: The path r and its six extensions ¢, s, w f, § and w.

is evaluable too. Again by Lemma 3.2.12, it suffices to show equivalence between
[2]1p(s and p,Ui+1. Let u and u’ be defined by

u = pyUps1 Usap and w” = ppyUsraUgs1 Py (3.53)
We first show the following two equations:

wu'u—[2](c+u'u

=[2 , 3.54
Dlcc [2]p1s) (3.54)
u' uw’ — [2](c + S)uu’
—_ — :prUk+17 (355)
[2]cc
where ¢ = [?f]” andc = {Zig} are non-zero and evaluable, since d + 1 = w(u) = ml.

Proof of the equations (3.54) and (3.55). Since p, € TL; commutes with Uy and
Ui+2 and since p,pp = pyy, the following holds:

wW'u = piaUie2 Uit prprUkst Ur pin) = PianPrUks2Uke1 Uret Ursa pi
= R2lpinUk+2Uks1Uks2p1n = 2lpinUks2p1- (3.56)

With Corollary 3.1.19, (3.56) actually refines to

w'u = [21pUsapr + 21piUrs2pi. (3.57)
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and applying Lemma 3.1.20 to p; and p; in (3.57) yields

w'u = [2](cps +Tps). (3.58)
Using (3.58) implies

W ud'u = [2)(c + &y'u = [21%(? i + & pr) = [2)(c + O)[2] (ep; + Ep7)

= —[2Pce(p: + pp) = ~[21cepyy

and moreover
B wun'u—[2)(c +c)u'u
[2]cc

which is just (3.54). To show (3.55) we have to work a little more.
Since Uyy, commutes with p» € TLy, 1, Lemma 3.1.20 implies

= [2]1)[[]’

[d+1]
Uks2pr Uiksz = Uz | prr — pr Uk+1pt~w Uk+2
[d+1]
= Uks2pr Uk = prr U2 Ut Ug pr ]
[d+1] [d+1]
= 21Uks2pr — pr Uk+2pt”W = Uk+2pr ([2] ] )
[d—1]
By applying Lemma 3.1.20 and substituting (3.59) twice, one sees
[
Uk+2piUrs2 = 1] Ukt2Pr Uksapr Ugs2 = Ui pr Ursaprr
[d—-1] [d—1]
= Urs2pr PTIRAGRT] Uki2pr = cUgsapr. (3.60)
Similarly the equation
Uk+2piUk+2 = €pi Ugsa. (3.61)

holds. Then (3.60) and (3.61) imply together

ut’ = prUps1 Upsa(pr + p)Uss2Urs1 pr
= PrUikt1 Uks2ptUks2Ugs1 pr + prUs1 Uks2 prUs2 Uk 1 pr
= cpr Uit Usapr U1 pr + €prUii1 pir U2 U1 pr
= cUrs1 Urs2pr Uis1 + €Ups1 ppr Uk Upa (3.62)
where we also used, that p,» € TLi.; commutes with Uy, and that p, € TL;

commutes with Uy,;. If s and w denote the other two extensions of r ending in
Shape(t) (see Figure 11), then s is an extension of "/ and w of 7. In particular,

P Ur2Uri1(pw + ps) = prrUra(pw + p)Uis1 = prrUis2psUpsn
= prUis2(ps + pPsUiks1 = prr(ps + p)Ui2psUiks1 =0 (3.63)
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holds by Lemma 3.1.18 and (3.7). (3.62) followed by (3.63) imply

ut' U1 (pw + ps) = (Uit 1 Ugsaprr Uret + CUks1 P Ur2Ug1) Ups 1 (Pw + Ps)
CUks1Ug2pr Ugr1 Ugr1 (P + ps)

[21cUk+1Urs2pr(Ps + Pw)Uk+1

= [2]cUp+1Uk+2(ps + puw)Usk+1

= [2]cUr+1 Ug+2Ur+1(ps + pw) = [2]cUk+1(ps + pw),  (3.64)

where we also used Lemma 3.1.18. Similarly to (3.64), one can show that
ut Ugs1(pw + ps) = [21¢Urs1(ps + pw) (3.65)
holds. Now (3.53), (3.64), (3.65) and Uy pigq = 0, because of (3.7), imply together

[2luw’ = utd Us1pr = us’ Ugs1(pw + ps) + utd U 1(pi + ps)
= [2]cUis1(ps + pw) + [21cUis1(ps + pw)

which implies that
ut’ = cUps1(ps + pw) + €Uks1(ps + pw). (3.60)
(3.53) and applying (3.66) twice let us obtain
u'urd = ur’ Ui Ugsa piaUks2 Ugs1 pr
= ([2]CUk+1(Ps + pw) + [21cUk+1(ps + PW))Uk+2P[z] Uir2Up+1pr
2){c(ps + pw) + c(ps + PW))prUk+1Uk+2p[t] Urr2Up+1pr

2)(c(ps + pw) + c(ps + PW))(CUk+1(ps + pw) + cUpy1(ps + Pw))

= (
= [2](c(ps + pw) + ¢(ps + pw))uu’
= (
2
- [2](c(ps + pw) + [206(ps + pw>) Ui
- [2](c2<ps T pw) + 218 (ps + m))UkH, (3.67)

where we also used the second part of Remark 3.1.8 for r and its extensions s, w,
5 and w. With uu’p; = 0 = uu’ pz, because of Uy p; = 0 = Ugs1 pr, (3.67) implies
now

ud'uw’ = [2](c + Oyuu’ = =[2]ce(ps + pw)Uks1 = [21c(ps + p) U
= —[2]ccprUpsr. (3.68)

Dividing (3.68) by [2]cc gives (3.55), which was to prove. [ ]
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Finally setting
un'u — [2](c + ¢)u

[2]cc
implements with (3.54) and (3.55) the wanted equivalence, namely we obtain that

=

u't = [2]py and du’ = pyUgsr.

Note «’ and i@ are evaluable since pj; and p,Uy, are, which we mentioned in the
beginning of this proof. |

The following lemma is only needed for a later proof. Recall that [n], denotes
the quantum evaluated at g.

Lemma 3.2.15. For m > 1 the function

Ty =

k-1 k-1
([ml—Z]) [ml - 1] +([ml+2]) [ml + 1] (3.69)

[ml—1] [ml] [ml+ 1] [ml]

is evaluable at q and Ty(q) = ([2]5 +2 - 2k)[2]’;‘2. In particular, Ti(q) # 0O for
k> 3.

Proof. 1tis sufficient to treat the case m = 1, since a 2lth root of unity is also a mlith
root of unity. We proceed by induction over k. For k = 1, it is clear that T} = [2]
and Ti(gq) = [2],. For bigger k the function T satisfies

. _([1—2])"‘l [l 1] +([1+2])"‘1 [+ 1]
“T\o-1 [7] [+1] [7]

-2 (([l—z])H [1-1] +([l+2])k_2 [+ 1]]

[[-11\[[-1] (] [[+1] (1]

L (1+2] k=2 [1+2][1+1]_[1-2][1+1])
[+ 1] I+1] [ [-1 [0

[l-2] H+21\2(l+21 [I-21[1+1]
= Ti - . 3.70
[1-1] lir([l+1]) (] (=11 [ G-70)
A little calculation, which is left to the reader, shows that
[[+2] [=21[I+1] _ (' +vHe-vh
(7] [[-11 [~ vl—y b2
which is evaluable at g with value %q__qq_l) = —2. Therefore, (3.70) and the
induction hypothesis imply that
T e I ) 421 [0-21[+1)
N TEET R\ TEST o u-1
is evaluable in ¢ with value Ti(q) = ([2]7 + 2 — 2k)[2]572. 0
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The next lemma (cf. (GW93, Big Diamond Lemma)) is somehow the peak
of this section, it will provide the means to show the main result of this section,
namely the statement regarding evaluability of regular critical tableaux. Moreover,
it will be necessary to discuss nilpotent elements in the next section. To fix termini-
nology for what comes, an idempotent p € TL, is said to dominate an idempotent

feTL,,ifpf=f=fp.

Lemma 3.2.16 (Big Diamond Lemma). Let t be a tableau such that both t and
its critical subtableau r end on the same critical line. If p, is evaluable, then p|
dominates an evaluable minimal idempotent f, such that the coefficients a and b
in p.fp: = ap, and pifpi = bp; have simple poles at v = q. Moreover, f satisfies
fpif =af and fpif = bf.

Proof. Suppose that Shape(r) = u € Pary(k) is on the mth critical line and that
Shape(t) = (u; + n, o + n). Instead of considering ¢ it is more convenient to first
treat the following “zig-zag” path

s= 5= (r = p® D = o f ) = (g 0o + )

defined by
g(r), ifi<k,
-1, ifi=k+1,
€(sp) =4 -1, ifi=k+2j, forl<j<n-1,

+1, ifi=k+2j+1, forO0<j<n-1,
+1, ifi=k+2n.

Figure 12 shows the paths s and § and their, supposed that p, = f.xpsX. To under-
stand the pictures, the following remark might be helpful:

1. For each pair (k + 2j + 1,k + 2j + 2), the “zig-zag” path s has a “hook”,
namely €42j4+1(s) = +1 and that 4,0 = —1. These “hooks” correspond
to the n — 2 Jones—Wenzl projectors p,—_; sitting above and below the middle
projector py in py.

2. § has one “hook” more, and these to the n — 1 Jones—Wenzl projectors pg.2
sitting above or below the middle.

Moreover following carefully the construction of the coefficients f; and f; for p;
and pj; in Definition 3.1.5 shows that

o (ld=-1\"" d]
fs—fr‘( i ) 7RIk (3.71)
o (ld+ 2\ [+ 1]
fg—fr‘([d”]) Ik (3.72)
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Figure 12: A path s, its conjugate § and their path idempotents p; and ps.

The elements u, u’, w and w’ are now defined by

u=up = Ui1Uks2 -+ Upron-1)(Ups2Ukss - - - Ugsp—2) and w = upyy,
W =u, = (Ur2Uiss  Ukion-1)(Uis1Uks2 -+ - Uggop—1) and w = ppgu’.

The outline of this proof is now to show that, if rescaled by an non-zero evaluable
scalar, the element ww’ enjoys the properties of the idempotent f of the statement.

1. We first show that w’ and w are evaluable. Let s3, ..., s,—» denote the “zig-
zag” paths ending in (u; + 2,4 +2),...,(u1 +n—1,up + n—1) and let s;
denote the path ending in (11 + 1, x> + 1) as in Lemma 3.2.12. Then pyy, is
evaluable by Lemma 3.2.12 and u;py, is evaluable by induction hypothesis
for 2 < i < n— 1. However, every path idempotent p,, where o extends
r, is either mapped to O under Uy, - - - Ugs2,—2 by (3.7) or contained in the
decomposition of one of the pyy, or of pys, which implies

n—1
upr = upis)+ ) Up[s;)-
i=1
Thus w is evaluable. Similarly, w’ is too.
2. Itis also clear that w'w is dominated by pyy.
3. The next step is to show the equations
psw'wps = Apy (3.73)
psw'wps = Bps (3.74)
where A and B are coefficients having poles at v = g. Since

U

’
uu=

0 0
G
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psi'upg equals

which implies
/ — ’ _ ’ _ nfS
PsWWps = psps)U up[s|ps = psi ups = [2] 7ps-
r

Moreover, substituting (3.71) into (3.75) gives

[d - 1])”“ [d]

[d] ) [d+1]

[ml — 21\ "'[ml - 1]
[ml—1] [ml]

pswwpg = [2]" ( ps = [2]" (
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which is just (3.73). Now for the second equation, using

': : D :([2]_ [k[-li]l])el:::] - F/:ﬂ q::b

we can calculate that psu’ups equals

2 (1d+ 31\,
‘Z([d+21) 2] (
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which implies

s (a3 1+ 21)
psu ups_ﬁ([d+2]) (2] ([d+1]) Ds- (3.76)

But substituting (3.72) into (3.76) yields

[ml] Pss

e (3N A 2] (Ll 4 2\ [l 1]
psiups = d+2] []—[d+1]ps—[] i+ 1]

and moreover,

ps = Bp;

[ml +21\""" [ml + 1]
[ml+ 1] [ml]

psw'wps = psu'ups = [Z]H(

which shows (3.74).

4. What is left is rescaleing w’w by a non-zero and evaluable coefficent, which
turns it into an idempotent. Similar as before, one can calculate

w'upsg'up, = u'up, - A and u'upsu’up, = u'up, - B,
which is leaft to the reader. This implies
prsj’ upsu'uprs) = Aw'w and prgu’upsu’upis) = Bw'w,
and moreover,
www'w = prau’upsu’ upps + prou upsu'upps) = (A + Byw'w.

On the other hand, since A + B = T, from (3.69), which is non-zero and
evaluable, setting f = Tinw’w provides an idempotent enjoying the properties
of the statement for the idempotent py4).

It remains to observe, that the equivalence given in Lemma 3.2.13 preserves poles,
so one can easily deduce the claim of the Big Diamond Lemma for general ¢ from
that for the chosen s. |

So far we did not construct that many evaluable path idempotents, most of our
proven statements assumed the existence of such an evaluable path idempotent.
But now we are in a good shape to obtain family of evaluable path idempotents:

Proposition 3.2.17.

1. Every regular critical tableau is evaluable.

2. Two regular critical tableaux with same critical subtableau and same shape
are equivalent.
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Figure 13: A regular tableau ¢, s = s;(#) its conjugate 5.

Proof. We first show that every regular critical tableau ¢ is evaluable by using in-
duction over the number of critical partitions on ¢ considered as a path. If this num-
ber is 1 or 2, than 7 is evaluable by Proposition 3.2.10 respectively Lemma 3.2.12.
Therefore ¢ is assumed to have at least 3 critical partitions and induction hy-
pothesis assures every regular tableau with fewer critical partitions is evaluable.

1. If 7 does not exist, we know that ¢ ends on the second critical line and its
critical subtableau on the first. In particular, Lemma 3.2.13 and the induction
hypothesis imply that p;; = p; is evaluable.

2. Now we consider the case where t = ([1] > 1® — .. > A® = Q) has
its last three critical partitions AD 20 and A% = A on the mth, (m + 1)th
and on the mth critical lines. By excluding the first case, we can assume that
pr exists. Set s = s;(r). The situation is illustrated in Figure 13. Now the
subpath of ¢ of shape 1) is evaluable by induction so by Lemma 3.2.13 also
Pl is evaluable. But also the subpath ending on 1% is evaluable by induction
hence pyy is. Therefore both ppq and py; are evaluable. By Lemma 3.2.16,
the idempotent pps) dominates an evaluable minimal idempotent f, such that

psfps =bpsand fpsf =bf (3.77)

where b has a simple pole in g. Defining u = fU;pj; and u* = pjqU;f and
using (3.7) implies first

piUj=0=U,p: (3.78)
and second with Corollary 3.1.19 that
piUjps =0 = psU;p; (3.79)

60



Furthermore, the equations (3.77), (3.78) and (3.79) together assure that

w'u=pUifUjpin = p:U;fUjps = pUjprafpisiUp:
=pUjpsfpsUjp: = p:UjbpsU;p; (3.80)

holds. In the proof of Proposition 3.2.10, we saw that

d+2]ld
p:UjpsUjip: = cp; where ¢ = % andd+2=m=+ 1], (3.81)

so substituting (3.81) in (3.80) implies

1
pr=—u'u, (3.82)
cb
which is then evaluable, since b has a simple pole in g and ¢ a simple zero.

On the other side, (3.77), (3.78) and (3.79) also ensure

un* = fUjpigU,f = fpsUjpUjpsf + f psUjpiUps f
[ S
= fepsf = bef, =0 (3.83)

where we used p,U;p;U;jps = cp, similar to (3.81). However, (3.82) and
(3.83) imply that

1 1
f= %uu* and p, = auu* (3.84)

are equivalent.

3. If the last three critical diagrams on ¢ are all on different critical lines, then
t is evaluable by the previous case. Since py, is evaluable by the induction
hypothesis and Lemma 3.2.13, also p; is evaluable.

Any other critical tableau s with same critical subtableau can be obtained by a
sequence of simple transpositions. The same proof as in Proposition 3.2.10 shows,
that p; and p; are equivalent, since the equivalence in Proposition 3.2.10 preserves
poles and zeros. |

Now that regular critical tableaux of same shape and same critical subtableaux
are equivalent, this section ends with the following lemma implementing an equiv-
alence between two certain regular critical tableaux of same shape, but having
different critical subtableaux.

Lemma 3.2.18. Fix m > 1 and let t be the unique tableau of shape A = (m + 1)l -
1, ) which passes through the diagram ((m + 1)l — 1), i.e. t corresponds to the path
obtained by going (m + 1)l — 1 steps to the right followed by | steps to the left in
the branching graph (see Figure 14). Then p, is equivalent to p,, where r is the
tableau of shape A with critical subtableau of shape ((m — 1) - 1).
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Figure 14: A regular tableau ¢, s = s;(¢), its conjugate § and r = 5,(3).

Proof. Set's = s;(t) and r = 5;(5), where i = (m+ 1)/ — 1 and j = ml — 1. Now
P, pr and p; are evaluable by Proposition 3.2.17, in fact, (3.84) implies

1 1
pr = %u*u and f = Holis

[(m+D)[|[(m+1)]-2]

where ¢ = [t D]

tent satisfying

is given by (3.81) and where f is an evaluable idempo-

psfps = bpsand psfps = Bpi

Withw = fU;pj,) and w* = p;qU, f, one can show, similar as for (3.84), that

1 1
= —w'wand f = —ww",
Pr= 7z ! be

where ¢ = W But this actually means, that p, and f are equivalent,

yielding equivalence between p, and p;. O

Now that we have proven most of the technical properties concering evaluabil-
ity and equivalence between path idempotents and other idempotents, we can turn
our attention to some more interesting results.

Section 3.2.2 The structure of TL,(q) at a root of unity

This section is dedicated to structure results in the non-semisimple Temperley—
Lieb algebra. As before, the statements of this section can be found in (GW93,
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Section 2). The presented proofs are basically those of (GW93), however, we filled
in some details. First, some new termininology is needed:

Definition 3.2.19. Let A be a diagram between the mth and the m+ 1st critical line,
i.e. ml < w(d) < (m+ 1)I, where m = 0 is allowed.

1. We say that t € Std(A) is coming from the right, if its critical tableau ends
on the m+ 1th critical line, otherwise it is said to come from the left. R(1) C
Std(A) will denote the subset of tableaux coming from the right and L(Q) the
subset of those coming from the left.

2. The elements Z§ and Zﬁ are defined by

d= D, pmoand =) pu

teR(1) teL(A)
with fy := #Std(2), fL := #L(A) and [ := #R(A).

Before formulating the main result of this section, we make the following ob-
servation:

Remark 3.2.20. 1. Clearly Std(A2) is the disjoint union of L(1) and R(2).

2. The summands of zﬁ and zf are not necessarily evaluable.

3. Let A(ll) be the group of reflections on Z about the number m/, m € Z, which
acts on diagrams of fixed size by reflecting about critical lines. In particular,
if u is the diagram obtained from A by reflecting about the m + 1st critical
line, we see that zf = z}]; and moreover ff = fyL. Consequently one obtains

f/lLZfA—ffZfA—fﬁlLandfurthermoref/lL:fd—f#+____

[1] denotes be the orbit of A under the action of A(ll) and zp, is defined to be
2uea] Zu- Moreover, u and v in [4] are said to be adjacent, if there is exactly one
critical line between u and v and they are obtained from each other by reflecting
about that line. By the radical, we mean the Jacobson radical, i.e. the ideal gener-
ated by all elements annihilating all modules. For example all nilpotent elements
are included in the radical. We denote it by rad. The main result of this section is
the following statement, which can be found in (GW93, Theorem 2.3):

Theorem 3.2.21. If A is non-critical, then zj)(q) is a minimal central idempotent
in TL,(q). The radical of zi3TL,(q) is nilpotent of order 3 and is spanned by the
spaces zf,Tanﬁ(q) for pairs of adjacent diagrams p,v in the orbit [1] and by the
algebras rad(zﬁTanﬁ(q)) for u € [1]. Moreover, the maximal semisimple quotient

of 210 TLx(q) is isomorphic to P i) M fuLC'

To investigate this, more notation is needed:
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Definition 3.2.22. Let A = (A1, Ap) € Pary(n),n = 2 be a partition. If 1 > Ay, @ =
(A1 -1, ) is called the left subdiagram and if A1, > 1, the partition 8 = (1, —1)
is called the right subdiagram.

Remark 3.2.23. Itis clear that f; = f, + f3 and moreover, the folllowing identities
hold:

fi=fE+ fﬂL and fR = fR + fBR, if @, B are non-critical, (3.85)
f,lL = fot fIBL and ff = f[f, if « is critical, (3.86)
ff = fz+ f(f and ff = faL, if B is critical. (3.87)

Together with f; = ff + ff, these formulas will allows us to use induction in what
follows.

To simplify the proof of the next proposition, it is convenient to refine the
notation of matrix units, see Remark 3.2.7). Therefore we fix the following ter-
mininology:

Definition 3.2.24. Let 7 € TL, be an idempotent and f a natural number. A z-
system of matrix units U = {u;;,1 < i, j < f} is a system of matrix units u;; # 0
in TLy, such that the idempotents u;; are pairwise orthogonal and dominated by z
for all i and such that they sum up to z. U is said to have order f. U contains an
idempotent p, if p = u;; forani € {1,..., f}. Moreover, U is called minimal, if f is
the maximal natural number such that there exists a z-system of evaluable matrix
units of order f. Finally, U is said to be equivalent to an idempotent r if one (or
all) elements of U are equivalent to r.

Remark 3.2.25. 1. Let U = {u;;} be a z-system containing p and assume that
p is equivalent to p’, i.e. uu® = p’ and u*u = p. Then there exists a z-system
V = {v;;} containing p’ of same order than U, by setting

uulj, i= 1,
vij = qupu’,  j=1,
uij, otherwise,

where we assumed without loss of generality that p = uy;.

2. To obtain a z;-system of evaluable matrix units of order f, clearly it suf-
fices by Remark 3.2.7 to have f pairwise orthogonal and pairwise equivalent
evaluable idempotents dominated by z,.

Now having a bunch of statements coming from Section 3.2.1 and also having
fixed the termininology, following (GW93, Proposition 2.1), we can produce a
sufficient number of evaluable idempotents.

Proposition 3.2.26.
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1. If Ais a critical partition, then there exists a minimal z,-system of evaluable
matrix units of order f) containing at least one p; for t € Std(A) regular.
Moreover for any two regular tableaux s and t in Std(Q) the idempotents p;
and p are equivalent.

2. If Ais a non-critical diagram, then there exists a minimal zﬁ—system of evalu-
able matrix units or order f/lL containing at least one pyy for t € L(A) regular.
Furthermore, for any two regular tableaux s and t in L(A) the elements pig
and p(s) are equivalent.

The proof takes a couple of pages. However, since the statement is proved
by one induction, we believe, that it is better to understand, if not splitted up into
smaller pieces. The reader may forgive us this inconvenience.

Proof. The statements of the proposition hold already in the following cases:

1. If A is critical with only one row, i.e. A, = 0, then clearly z; = p;,. Now the
statements are just a reformulation of Proposition 3.2.17.

2. If Ais non-critical and has only one row, then its critical subdiagram is evalu-
able by Proposition 3.2.17 and by Lemma 3.2.13 also zﬁ = p|y is then evalu-
able. Likewise equivalence follows by Lemma 3.2.13.

3. If A is a diagram left of the first critical line, i.e. if w(1d) < [, then Proposi-
tion 3.2.10 implies that z) = },esia(1) Pr 18 evaluable and it also states that all
the summands are equivalent.

We proceed by induction on A; + A, and by excluding the above three cases, we
can assume that 1, # 0 and that the statements of the proposition hold for all
diagrams of size less then A; + A,. In particular, both @ and 8 exist and they enjoy
the statements of the proposition.

Moreover, z,; has a minimal system of matrix units of order f; containing a reg-
ular p,, but which is not necessarily evaluable. Therefore it suffices to find a system
of evaluable matrix units of order f) containing a regular p;, it will automatically
be minimal. The same is of course true for z/Ll. There are four cases to consider,
namely the cases where

1. Ais critical,

2. « is critical,

3. Bis critical or

4. neither A, nor & and nor S are critical.

We start be regarding the first one:
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1. If A is on the mth critical line, let u = (1; — 1,4, — 1). Let r € Std(u) be
a tableau, such that its critical subtableau is of shape ((m — 1)/ — 1) or if
m = 1, let r have no critical subtableau. Since r is regular, it is evaluable
by Proposition 3.2.10, if m = 1, and by Proposition 3.2.17, it m # 1. Let
t € Std(4), such that ¢ and r enjoy the assumptions of Lemma 3.2.12, the
situation is then described by the first picture in Figure 9. In particular, ¢ is
also regular, thus evaluable, similar as r is, by applying Proposition 3.2.10
respectively Proposition 3.2.17.

(a)

(b)

(©)

We first produce a z5z,-system of evaluable matrix units of order fX
containing p,;. By induction hypothesis, there exists a minimal z&-
system U = {u;j}; j<ft of evaluable matrix of order fQL containing
P = u1p for some w € L(a). However, by Proposition 3.2.10 (if
m = 1) or by Proposition 3.2.17 (if m # 1), we see that py, is equiva-
lent to pyy, thus by Remark 3.2.25, we can assume that w = ¢'.

Now set v;; = ujp;uyjfor 1 < i,j < faL. Then V = {v;j} is a zézd—
system of evaluable matrix units of order £, which contains p, = vi;.

Now we produce a z}gz,l = ZRz1-system of evaluable matrix units of
order 2f, = fR + ]f‘f, which is equivalent to p;.

By induction assumption, there exists z,,-system U of evaluable matrix
units containing p, (using Remark 3.2.25) and which is of order f,,.

i. Every x € U is equivalent to p,, which implies that also xU,_; and
x([2]-U,-1)z, are equivalent to p,U,_1 and p,([2]-U,_1)z4, Since
x and p, are elements of TL,_, and U,—; commutes with 7L,_, C
TL,. In particular, this means that there are 2 f,, evaluable, pairwise
orthogonal and pairwise equivalent idempotents all equivalent to
Pr Un-1.

ii. Since t was chosen to satisfy the assumptions of Lemma 3.2.12
together with r, all those 2, idempotents of the previous part are
equivalent to [2]p;. Consequently, dividing by [2] yields 2f, =
R4 Jfé evaluable, pairwise orthogonal and pairwise equivalent
idempotents all equivalent to p;.

All these idempotents are dominated by zé‘zﬁ = zgz,l, which means,
that they give rise to a z8z;-system of evaluable matrix units of order
2f = fR+ fﬁL, which is equivalent to p;.

Now we look for a zgz/l—system of evaluable matrix units of order fﬂR
equivalent to p;.
1. If 1, <[, then f[§ = 0, thus there would be nothing to show.

ii. If Ao = [, then j;f = 1 implies, that there is exactly one tableau 7
of shape A with critical subtableau of shape ((m + 1)/ + 1). More-
over, p;is evaluable by Proposition 3.2.17 and equivalent to a path
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idempotent p; by Lemma 3.2.18, which is then again equivalent to
p: by Proposition 3.2.17, thus p; is equivalent to p;.

iii. Now suppose that A, > [. Let # € Std(u) with critical subtableau of

shape ((m+1)I-1) and 7 € Std(1) with same critical subtableau sat-
isfy the assumptions of Lemma 3.2.12. The situation corresponds
to the second picture in Figure 9.
By the induction assumption for zg, which equals to z%, where
is the diagram obtained from S by reflecting it about the m + 1th
critical line, we can argue as in the first subcase (1.a) to obtain
a Zgzﬂ—system V of evaluable matrix units of order fX contain-
ing p;. In particular, Lemma 3.2.12 implies that V is equivalent
to [2]7! - p#U,—1, which is equivalent to [2]‘1p,U,,_1 since pj is
equivalent to p, in TL,_ by induction assumption. But then V is
also equivalent to p;.

Since z£z,, 7%z, and ZgZ/l are orthogonal, we obtain by part (1.a), (1.b) and

(1.c) a set of f, + 2fR + ];5 pairwise orthogonal and pairwise equivalent
evaluable idempotents (all were equivalent to p;). In particular, since

o= fat fo=fo+fa 4 [E+ 15 = fo+ 8+ X+ 15 (3.88)

this gives rise to a z,-system of evaluable matrix units containing p,, where
t € Std(A) is regular.

To finish this case, it remains to show, that for two regular tableaux s and ¢
of shape A the elements p; and p, are equivalent. If  and s come both from
the right or both from the left side, we know that pj+ and p|y| are equiva-
lent by induction hypothesis (and evaluable since their critical subtableaux
are regular). By using the fact that z, is central and that p; = z;p[y and
Dt = zappr] equivalence of p; and p, follows as well. On the other hand,
we already showed the equivalence of two particular, regular tableaux, one
coming from the left and one from the right, namely p; and p;.

2. Now suppose that A is non-critical and S is critical and choose a regular
t € L(A). Induction hypothesis assures a zé—system U = {u;;} of evaluable
matrix units of order wa = fAL, such that U, using Remark 3.2.25, contains
pir1- In particular, setting vij = u; pjqu1; and using z5 = z5z, yields a z4-
system of evaluable matrix units of order f /lL containing py,. Escpecially zﬁ is
evaluable. For two regular tableaux ¢, s € L(1), the elements py] and pyyq are
equivalent by induction assumption. But zﬁ being evaluable and commuting
with pjy) and pyy implies together with pjg = pjy1z5 and pyy = pjr25, that
Dis) and py, are equivalent.

3. Now suppose that « is critical.
(a) We first produce a zﬁza—system of evaluable matrix units of order f,

equivalent to pir}, such that T € L(A) is regular. Let r be a critical
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regular tableau ending in (a; — 1,2 — 1) and let ¢ € Std(e) enjoy to-
gether with r the assumptions of Lemma 3.2.12. By induction, there is
a z,-system U of evaluable matrix units of order f;, containing a regular
path idempotent p,, and by using Remark 3.2.25, we can assume that
w = t. But then by Lemma 3.2.12, p, is equivalent to ﬁp,Un_l and
moreover, by Lemma 3.2.14 this is equivalent to p;r), where T € L(1)
enjoys together with r the assumptions of Lemma 3.2.14.

In particular, U is a zﬁza-system of evaluable matrix units of order f,
equivalent to prry, where T € L(A) is regular.

(b) Induction hypothesis gives us a zé—system {u;;} of evaluable matrix

units of order Jf‘f containing a regular py,,, w € L(5) and Remark 3.2.25
ensures, that we can assume w = 7’. In particular, setting v;; =
uj1 pru1j gives rise to a zézﬁ—system of evaluable matrix units of or-

der fj containing pyr).

By using f}' = f, + f; and the fact that zjz} and z,z; are orthogonal and

sum up to Zﬁ, we obtain a Zi—system of evaluable matrix units of order ff
containing pyr), where T € L(A) is regular. In particular, & is evaluable.

If § and T are two regular tableaux ending in A and if they are both com-
ing from the left or the right, then pjsy and p[rj are equivalent due to the
following facts:

piry = Zippr)s and pis) = 2ipiss (3.89)
prs and ppr are equivalent by induction hypothesis, (3.90)
zﬁ is central in (z, + zé)TLn(za + z[L;). (3.91)

But it is already known that ps; = ps- and prj are equivalent for two par-
ticular, S with S’ € Std(a) and T with T’ € L(B), namely S’ = 7 and T from
above.

. The last case to consider is that the diagrams A, @ and § are all non-critical.

If + € L(A) is any regular tableau, such that ¥ € L(a) and ¢’ has shape
(A1 =1,2—1),let s = s5,_1(t) € L(A) such that s’ € L(B). Then P1r'1» Piels Pls]
and ppy are evaluable by induction hypothesis and Lemma 3.2.13, since
their common critical subtableau is regular and moreover, Lemma 3.2.13
implies that pj and p[y) are equivalent.

The induction hypothesis gives rise to a z--system U of evaluable matrix
units of order fL, containing, using Remark 3.2.25, the idempotent py,).
Setting v;; = u;1 pjsu1j, yields as before a zézﬁ—system of evaluable matrix
units of order £~ containing pjyj. Argueing similarly implies existence of

a Zézﬁ—system of evaluable matrix units of order }f‘f containing pys. Both
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Figure 15: A non-critical tableau ¢ with critical subtableau of shape (ml — 1), s =
smi—1(¢) and an extension T of z.

systems form a z4 system of evaluable matrix units of order & = fL + fﬁL
containing pys, since pyq and pys) were equivalent.

Again, if w is another regular path with w € L(2), then py, is equivalent
to pps due to (3.89),(3.90) and (3.91), where one has to replace z, by Zé in
(3.91).

Now all cases are treated. O

With this family of evaluable idempotents at hand, we would like to describe
the minimal central idempotents modulo the radical using the idempotents z, re-
spectively z/Ll. This is formulated in the next theorem, however to prove it, we first
need a lemma to identify nilpotent elements:

Lemma 3.2.27 ((GW93, Nilpotent elements)). Let t be a non-critical tableau with
critical tableau of shape (ml — 1) for some m > 1 having its endpoint to the left of
the mth critical line and moreover let the path s defined to be s = s,,—1(t), see also
Figure 15. Defining nj = piaUmi-1py implies that:

1. npn is evaluable but nilpotent of order 2, if evaluated at v = q.

2. pinTL,pin(q) is two dimensional and isomorphic to C[x]/ (x?).
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3. piTL,p1s1(q) and pigTL,pin(q) are one dimensional.
4. piTLuprsiTLyp1n(q) = Cniy(q) and

{0}, m=1,

TL TL =
PisiTEapinTLnp1s(9) {Cnm(q), otherwise.

5. ninTL,prs(q) = pisiTLang(q) = {0} and if m > 1, also
pinTLuns1(q) = ni TLypia(q) = {0}

Proof. The critical subtableaux of s and ¢ are regular hence evaluable and further-
more, by Lemma 3.2.13 ppq and ppq are evaluable.

1. (3.7) implies U,,;;—1 pr = 0, which gives rise to

[ml]
[ml—1]

pinUni-1pin = prUmi-1pr = P, (3.92)
where the last equality follows by a little diagramatic argument. Note that p,
is not necessary evaluable, thus evaluating at g is not permitted to obtain 0.
But (3.92) implies

2 [ml]

M = i = 1P Ymi-1 P (3.93)

which can be evaluated at g yielding n[zt](q) = 0 since [ml] = 0. To see that
Pi1Umi-1p1q(q) # 0, let T be an extension of # ending on the mth critical line
and also having its critical subtableau of shape (ml — 1), see Figure 15.

Applying Lemma 3.2.16 to T implies the existence of an evaluable minimal
idempotent f dominated by pyr}, such that the coefficient b in fprf = bf
has a simple pole in v = g. (3.92) lets us then deduce

[ml] [ml] [ml]

friaUmi—ipinf = mi=1] l]fptf: [l — l]fPTf: [ml —

qof (394

However, [ng’l”_[]l]b is regular at g, thus we can evaluate (3.94) to obtain that

SPinUmi-1p1nf (@) # 0. In particular, ni(q) = pinUmi-1p11(q) # 0.

2. pUpi—1ps # 0 in TL,, implies
dimcy) piTLyp; = 1 = dimcq) piTLypy. (3.95)
and furthermore 3.1.19 gives rise to

dimc,) piTL,p; = 0 = dimc,) p/TL,py. (3.96)
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since 7 and ¢ are of different shapes. But then (3.95) and (3.96) together yield
dimcq) pinTLapra = 2,

which implies on the other hand with Lemma 3.2.3 that
dime pigTLypin(q) = 2. (3.97)

Since pj; and ny; are non-zero, evaluable and since py; is idempotent, but
np, nilpotent, they must form a basis. An isomorphism is given by mapping
ptol and ng to x.

. This follows from applying Corollary 3.2.11, Corollary 3.1.19, (3.95) and
Lemma 3.2.3.

. The previous part implies
dimc pigTL,prgTLypin(q) < 1. (3.98)
Setting
u = prUni—1prg and u” = praUnmi—1 prs)- (3.99)
lets us calculating

w'u = piUni-1 pis\Umi-101a = PrUmi=1PsUmi-1P:
_ [ml][ml - 2] _ [ml-2]
= = 1iml =107 T [mi=1]

nis, (3100)

where the third equality follows by a little diagramatic argument, which
was for example done in the proof of 3.2.10. Evaluating at g implies that
uwu(g) = [2]ynin(q), so u(q) and u*(g) are both non-zero and forthermore
dimc pigTLypis TLupisy(q) = 1.

o If m =1, then p;5) = ps and s is left to the first line, hence evaluable by
Proposition 3.2.10. Moreover, one can obtain similar as (3.100) that

[ml][ml - 2]

Tl — i =1 1]ps. (3.101)

u” = PsUmic1ptUpmi—1ps =

Evaluating this at v = g yields uu*(g) = 0, since u and u* were evalu-
able. But pjyTL,piTL,p(s) is one dimensional and generated by uu™,
which is non-zero in TL,, thus prgTL,pinTL,ps(q) = 0,

e On the other hand m > 1 implies that the critical subtableau of s is of
shape ((m — 1)/ — 1) and that s(,—1)—1 is admissible for §. Defining

W = prsiUgn-1yi-1p1n and w* = piaUn-1)-1Pys1» (3.102)
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allows us to obtain

[Gn = DIm =1 =2] _ [m=1)-2]
[((m—1i—1] "

*_

" m-Di-1m—-Di— 17"

since [(51(1"_1;)11)_”” ps = npz). Consequently, evaluating this at v = ¢q yields

ww*(v) = cnpg(q) for some non-zero ¢, since nominator and denomi-
nator each are evaluable at g and since ny) is evaluable.

ww (3.103)

5. Using (3.92) and (3.99) it is easy to see that

. [ml] U and [ml]
niau = mil— unyg = ———
[1] [l = 1771 Umi-1P1s) 1= 1]

Prs\Umi-1p1a

are both 0 at g. Moreover, if m > 1, (3.103) and (3.99) give rise to

e lm-bn o qm-bn
[s] = [(I’I’l — l)l— l]ps = Pl ml—lps[(m _ l)l— 1] =Y
[(m—1)]] [(m—1)]]

ns\i = PsU = P[s Um/—lps[

[(m—1i—1] m—Di-1]

since praUpmi-1ps = 0 by Corollary 3.1.19, which is already true in 7L,. O

Having talked about nilpotent elements, we can now prove (GW93, Theorem
2.2):

Theorem 3.2.28. 1. If Ais critical, then z,(q) is evaluable and minimal central
as an idempotent in TL,(q). Furthermore, 7yTL,(q) = My,C.

2. If Ais non-critical, then zﬁ is evaluable. Moreover,
(a) zﬁTanﬁ(q) = Mffc, if Ais to the left of the first critical line and
(b) ETL,ZE ) ={(35). A, B MpC), ifnot

Proof. 1. If A is critical, then z, is evaluable by Proposition 3.2.26 and more-
over it is known to be minimal central. By Lemma 3.2.3, we obtain that
dimz3TL,(q) = f/%, so if U = {u;;} is a minimal z,-system of evaluable
matrix units enjoying Proposition 3.2.26, then u;; — E;; implements an iso-
morphism z,TL,(q) = My, C, where E;; is the canonical basis of M, C.

2. The same is true if A is non-critical but left of the first critical line, since in
this case, one actually has z& = z,.

3. Finally if A is non-critical and between the mth and the m + 1th critical lines
foram > 1, then zﬁ is evaluable by Proposition 3.2.26. In TL, the element
Zﬁ satisfies = Y cr ) pr + py, thus, with dim p,TL, p5 = 0, we obtain that

dimcy 24TL,25 = ) dim(pTLypy) + dim(piTLps) = 2(f1),
t,s€L(A)
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implying with Lemma 3.2.3, that dimc z/LlTan/Ll(q) =2 f/lL)z. Now Proposi-
tion 3.2.26 states the existence of a zﬁ—system U = {u;;} of evaluable matrix
units of order f } such that U contains u;; = py;), where 7 € R(A) is an evalu-
able regular tableau of shape A with critical subtableau of shape (ml — 1)
(using Remark 3.2.25). Now nj;; = prgUmi—1pis is non-zero and nilpotent
of order 2 by Lemma 3.2.27, therefore it follows, that N = 3 u;inquy; is
also non-zero and nilpotent of order 2, but commuting with all #;;. Thus
the subalgebra of zXTL,z%(¢) generated by N and the matrix units u;; is by
Lemma 3.2.27 isomorphic to M fﬂLC ® C[x]/(x%), which is also isomorphic to

{(8 Al?) ,A;B € Mf/ILC}. Since its dimension is 2(f/lL)2, it must already be all
of zﬁTanﬁ(q). m]

We now want describe the blocks, the radical and the semisimple quotient of
TL,(g). We know that nilpotent central elements are always contained in the Ja-
cobson radical. Before proving the main theorem, we start with:

Lemma 3.2.29. For v, u € [A] adjacent and to the right of the first critical line
2L TLyz(@rad(zE TLuzk (@) = rad(25 Lz ()2 TLazE (g) = {0}
holds. Moreover,
2 TLyzh TLazh(q) = rad(z TLaz(q)).

Proof. Without loss of generality, v is assumed to be to the left of 4 and moreover
let v be also between the mth and the m + 1th critical line for m > 1.

1. The proof of Theorem 3.2.28 explains why the radical of z,TL,z,(g) is gen-

erated by
N = Z Ui 5| U1

where U = {u;;}is a Zf-system of evaluable matrix units of order f,,L contain-
ing pys), where s € L(v) is a regular tableau with critical subtableau of shape
(ml — 1) and where n[5 = pigUmi-1p[s)- Remark 3.2.25 lets us assume that
Sm(+1)-1 1s admissible for s and that ¢ = s,,41)-1(s) is regular in R(v) with
critical subtableau of shape (m(/ + 1) — 1), i.e. the situation is that in Fig-
ure 15, such that v = Shape(s) = Shape(r) and u = Shape(?). In particular,
applying Lemma 3.2.27, its fourth part states that

rad(z5TL,z5(q)) = NZETL.ZH (). (3.104)

LetV = {v;j}bea zﬁ—system of evaluable matrix units of order fﬂL containing
D~V exists, since ¢ is regular and in L(u), since ¢ € R(v), so we can assume
that vi; = pyq and that

Vii = Vi1 P[V1i (3.105)
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With
25 TLyzyN C span(z, TLyzynisTLy), (3.106)
the equations (3.104), (3.106), (3.105) and the fact zﬁ = >; vii imply

2, TLyzirad(zh TLy20)(q) = 2, TLyzh N2h TLazy (q)
C span(z, TL,zyn(y) TanV TL,,ZV )

C SPaH(Z vitPinTLans TLu(q)),
7

which is {0} by the fifth part of Lemma 3.2.27.
2. The same works also to show that rad(zﬂ Lyz, (q))zﬂ L.z5(q) = (0).

The second equation directly follows from the fact that Ny generates the radical
and from the fourth part of Lemma 3.2.27. O

Now we are in a position to prove the following theorem, which is the main
result Theorem 3.2.21 of this section:

Theorem 3.2.30 (Theorem 2.3, (GW93)). If A is non-critical, then zx(q) is a
minimal central idempotent in TL,(q). The radical of zjaTL,(q) is nilpotent of
order 3 and is spanned by the spaces zLTanV (9) for pairs of adjacent diagrams
U, v in the orbit [A] and by the algebras rad(zﬂ Lyz,; L(@) for u € [A]. The maximal

semisimple quotient of zj0TL,(q) is isomorphic to EB# auM fHLC.

Proof. The element zj3) = X e Z/lj = 2ue[a] Zu 18 an evaluable central idempo-
tent.

1. We first calculate the radical of zj4)TL,(g). It is clear that
qulln = ) £TLuZE (3.107)
pvelA]

(a) Assume that y, v € [A] are adjacent. Without loss of generality v is to
the left of u, i.e. vi < uy, thus every path r € L(u) satisfies

Pl = pr + prand f € Std(v).

In particular, for a path s € L(v), psTL,p; is one dimensional, so the
dimension of zﬁTanﬁ C TL, is the number of those (p;, p,) pairs, i.e.
ﬁf fL. However, Lemma 3.2.3 implies then dim zﬁTanﬁ(q) = f#L fE.

(b) If u and v are not adjacent, then Corollary 3.1.19 implies that zﬁTanﬁ =
{0}.
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By the above two points, (3.107) refines as follows:

qulln = P LTl ) LTLL. (3.108)
UE[A] wveld]

p,vadjacent
Moreover, using Lemma 3.2.29 implies now that

Ry = P 2TLikq) & P radETL.Zk(9)

wuveld] HE[A]

v adjacent
is a nilpotent ideal in z;y7L,(g). But the quotient is semisimple:
2 TLa@) R = €D 7 TLuz(@)/rad(z TLuz(@)) = ) M C,
HE[A] peElA]
so Ry, is the radical of zpTL,(g).

2. Using Lemma 3.2.29 and the fact that rad(zﬁTanﬁ(q)) is of order 2, imply
clearly that Ry, is nilpotent of order 3.

3. To show that zﬁ is a minimal central idempotent modulo the radical, we
observe first that zﬁ is clearly idempotent and morever, that

. zﬁ commutes with zZZTLzL if yu = v,
e if v # u are adjacent, then Zﬁzf TL,z5(q) is contained in the radical,

e If v # y are not adjacent, the space z;z-TL,z%(q) is zero and

if n # v, then zﬁz€ Tans(q) is zero or always contained in the radical.

In particular, z2(g) commutes with Z(41(¢) modulo the radical, thus Z(g)isa
minimal central idempotent modulo the radical.

4. It is left to show, that z;4(¢) is minimal as an central idempotent in 7L,(q).
By the previous part every central idempotent in z;3;7L,(q) is a sum of some
z{;(q), v € [4] and an element in Rpy;. However the reader may easily check,
that no such element is central, if it is not z;4;(g), by using that Ry ,; is of order
3. O

Having the main result proven, we finish this section by showing that the action
defined in (2.24) is actually faithful for all ¢ € C*.

Writing down that action from (2.24) by using the morphism ¢, from (2.7)
implies that U; acts from the right by

7yt TLu(@)® — End(V®"), U; v id2" " T @ id5" ",
where 7' € End(V ® V) is given by the rule
VWi®vji—v®v, ifi <j,
V,‘®Vj}—> ()’ 1fl=],
v_lvi®vj_Vj®Vi, ifi > j.

Now we can prove the following theorem, following (GW93, Theorem 2.4):
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Theorem 3.2.31. The representation n, defined above of TL,(q) on V®" is faithful.

If g is not a 2/th root of unity for [ = 2, ..., n, opposed to our global assumption
of this section, the statement is just Proposition 2.3.10.

Proof. 1If p € TL, is any idempotent evaluable at ¢, then p is also evaluable at
a neighborhood of ¢g. If & is in a deleted neighborhood of ¢, then m¢ is faithful,
thus 7¢(p) # 0, which implies with constancy of rank, that 7,(p) # 0, hence 7, is
faithful on the maximal semisimple quotient of TL,(qg).

If A is non-critical, ¢ a regular tableau of shape A and nj;(v) the non-zero
nilpotent element in the two dimensional algebra piqTL,pi;(q), then the proof of
the first part of Lemma 3.2.27 shows, that there is an evaluable minimal idem-
potent f in TLy for some N > n, such that fnp;f(q) is a non-zero multiple of
f(g). The representation 7, commutes with the usual embedding TL, C TLy and
End(V®") ¢ End(V®"), so that m,(f) # 0 implies m,(njq) # 0. But for for any non-
zero element in rad(7L,), the ideal generated by this element contains an element
of the form ny,. In particular, 7, is faithful on rad(TL,). O

Now the discussion of the minimal central idempotents modulo the radical as
it is presented in (GW93) is finished. Although some of the proofs of this sec-
tion were quite tiring, nevertheless we stress, that all statements not dealing with
modules were here shown diagramatically. In particular, the construction of a suf-
ficient number of evaluable idempotents, Proposition 3.2.26, did not use any non-
diagramatic statements.

However, while proving the statements of Section 3.2.1, one could observe
that elements implementing equivalences between path idempotents, seem to be
constructed after a certain schema. For two paths ¢ and s of same shape, we saw that
the space pTL,p; is one dimensional, thus there exists a basis p;, indexed by pairs
of tableaux ¢, s of same shape, such that p,; € p,TL, p;. But it is also interesting to
know the coeflicents of this basis, a good aproach would be to construct this basis
Ds. explicitly. This is done in the next section.
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Section 4

An upper triangular relation

Let p; and p, be two path idempotents in 7L, such that ¢ = s;(s). If g is not a root
of unity, we saw in Proposition 3.2.10 that p; and p, are equivalent and moreover,
that the elements e, f implementing the equivalence are, up to multiplying with a
scalar, the elements p,U;p, and p,U;p,. It is also clear, that p,TL,p, being one
dimensional is generated by p,U;p;. Now if moreover s; is admissible for s and
r = s5;(s), then one would obtain that p,U;p,U;p, and p,U;p;U;p; would imple-
ment, up to a scalar, an equivalence between r and ¢ and secondly they would also
generate the spaces p,TL,p; and p,TL,p,. This leads to the idea to construct ele-
ments p; € p,TL,p, inductively and by choosing carefully the right coefficents,
they would implement equivalences between p; and p,. This is done in Section 4.1.
It is clear, since TL, decomposes into a sum of one dimensional subspaces p;TL, p
for Shape(#) = Shape(s), that the elements p, ; form a basis, which will include the
path idempotents p;; = p;. However, we can actually calculate the coefficents in-
volved to express p; in terms of another known basis, the cellular basis §; s(see
also Remark 2.2.6) used for the usual cellular structure on TL,, defined in (GL96,
Example 1.4). An example of this calculation is given in Section 4.2 and the gen-
eral formula will be proven in Section 4.3. As a side result, we will be able to
express the path idempotents p, in terms of the cellular basis S  with more or less
explicit formulas, which is as far as we know a new formula.

The main results of this section are summarized by the following theorem (see
Definition 4.1.8, Proposition 4.1.10 and Theorem 4.3.18):

Theorem. There exists a basis of TL,, of elements p, s indexed by pairs of tableaux
t and s of same shape such that

1. p:s equals the path idempotent p;,

2. the elements p; s form a system of matrix units, i.e. p;sps; = pirfor all paths
t, s, r of same shape and

3. the basis p; s is related by an upper triangular relation with respect to the
dominance order to the cellular basis B, ; of (GL96).

Moreover for u,v,t, s of same shape, the coefficent ctusv € Std(n) of Buy in prs =
Sustwas CusPBus is described by (4.43).

We start by defining explicitly the elements p; ;.

Section 4.1 A new basis

The starting point is to define p;; for adjacent paths ¢ and s, actually they were
already introduced implicitly as the elements # and w in the proof of 3.2.10:
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Definition 4.1.1. Let s < t be two paths of same shape, such that s;(s) = t and let
0— AV > o {l(i) be the maximal common subpath of s and t, see Figure 16.
Setting d = /l(ll) - /1(2’), the elements p; s and py, are defined by

Dsi = fsupsUips and pys := fi5sp:Uips, 4.1

d+1 d+1
where fy; = [l nd fis = ﬁ.

[d]

Figure 16: Paths s and ¢.
Remark 4.1.2. The proof of Proposition 3.2.10 justifies the choice of the coeffi-
cents f; ¢, since it implies that p,p; ; = p;.
To construct elements p; ; inductively, we introduce the following notation:

Definition 4.1.3. Let r and t be two paths of same shape and s;, --- s;, € S, be a
minimal expression, such that

1. (si -+ 5;,)(r) =tand
2. ri, iy = (i, ... 8i,)(r) is always a standard tableau.
Then s;, - - - s;, is called a (r, t)-regular expression.

The following lemma is only needed in a relativly simple special case in this
section, but it is also needed in Section 4.3.
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Lemma 4.1.4. If sy, --- s, is a (r, t)-regular expression for two paths r and t, then

prUil T Uikpt = prUilpril Uiz T prik,l...il Uikpt' (4'2)

Proof. The first case to treat is the relativly easy case where k = 2, i.e. where
t = sjsi(r) = rj;. Applying (3.11) proves this case:

prUU;p: = pr(pr + pr)UiU (pr, + pridPry = PrUipr + pr)(pr, + pridUjpr;
= prUipr,Ujp:.

Now if k > 3, then let J; for d < k be defined by
Ja =G, ) €2 1< ji <o < jy < d).

This is the set of ordered tuples j of length at most d in {1,...,d}. For j € J; the
tableau r; and the element p; € TL, are defined to be

(r) € Tab(1) and Prjs Tj is standard, 4.3)
ri=s;. ...8. (r a and p; ;= .
I Y gl Pi 0, otherwise.
For example, if j = (1,...,k) € Ji, then rj = r;_; = t. Moreover, if d < k, and
Jj€Jq CJygys, the tuple jl € Jy41 18 defined to be

J'=Glaeoosjard + 1), (4.4)
which implies that s;,,,(r;) = r;1 and moreover, that

Dsi,, ) = Pjt- 4.5)

It is clear, that if r; is standard but s;,,, (r;) is not, then this means by using (3.7)
that p;U;,,, = 0. Therefore, with Lemma 3.1.18, (4.4) and (4.5) the equation

id+1
(Pj + pjl) Uigr = Uiy, (Pj + pjl) (4.0)

holds. Since J;4 is the disjoint union of J; and {j1 : J € Jg}, (4.6) implies

Z PiUis, = Z(pj +pj‘)Uid+1 = Z Ui, (pj +pj‘) = Ui,., Z pPj
J€Jar1 J€Ja J€Ja J€Jas1
i.e. for d < k, we obtain
> pilUi = Uy, Y pj. 4.7)

Jjela Jjela

We now show for d < k the following equation by using induction:

prUn---Uid :PrUi1~~Uidej- 4.8)
J€Ja
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Proof of the equation (4.8). The equation is clear for d = 1, since then };c; pj =
Pr, + Drs SO (4.8) for d = 1 follows from Lemma 3.1.18. Now if d > 1, then
Ja-1 C Jg and the fact that the p are idempotents imply together that

Z PjZPlZ Z pj- 4.9)

Jjelaar ey J€Ja-1
Then induction hypothesis for (4.8) and substituting (4.7) and (4.9) yield

prUi ... Uiy = pyU;y .. Uy, Z ijid =pUi .. Ui Z Pj ZplUid

J€Ja-1 Jje€Jaar  lely
=prUi|---Uid_1 Z ij,'del=prU,‘]...U,'d_lU,'del. | |
je]d,l lEJd lEJd

Applying induction hypothesis for (4.2) and using (4.8) allow us to deduce

prU; ... Ukprik,..i| =prUi ... Uk Z ijk(prik_l.,.q + Pry i, )prik.,,il
J€Jk-1

=prUi .. Uk Z pj(prik,lmil + Pry i )Ukprik“.il
J€Jk-1

=pUi ... Uk—lprik,l...il Ukprik...il
= prUhpr[l s Uik—]prik_|...i1 Uikp”[k...il >
where we used 2 jej,_, Pj(Pry_ i ¥ Pri i) = Pry_, ;- =

These (r, t)-regular expressions are actually braid-avoiding, i.e. they do not
contain subwords of the form s;s;.15; € S,,. This will be used later.

Lemma 4.1.5. Any (r, t)-regular expression s;, - - - s;, is braid-avoiding.

Proof. There are eight possibilities for a tableau where to place the numbers i, i +
1,i+ 2 indicated by Figure 17. We leave it to the reader to check that s;s;,1s; is not

NS

Figure 17: Eight possibilities.
admissible in all cases. The same works for s;,15;8;+1. O

Remark 4.1.6. 1. It is known, that two minimal braid-avoiding expressions in
S, can be obtained from each other by only appling the relation

$iS; = S8;S; for |i— _]| > 1. (4.10)

This is for example shown in (Ste96, Proposition 2.1). However, if r is a
standard tableau, such that s;(r) and s;s;(r) are still standard, i.e. such that
s;j and s;s; are admissible for the path r, then also s; and s;s; are admissible
for r. In particular, the set of (r,f)-regular expressions is preserved under
(4.10).
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2. A (r,t)-regular expression s;, - - - 5;, is also minimal as an expression in S .

Since (4.10) corresponds to the relation (2.6) in 7L,, we obtain the following
consequence:

Corollary 4.1.7. For two (r, t)-regular expressions s;, -« - Sj, = §j, =+ 8,

Drriy Prijrigiy * " Priy_iystipiy = Prorjy Priyorigiy © " Pri_ iy Tiee-in (4.11)

holds, where p;, is defined for rj, j, andrj,,,  j, in Definition 4.1.1.

Lipe1-i1
Proof. We consider first the special case, where k = 2 and ¢ = s;5;(r) = 5;5;(r) for
two admissible s;, s;, such that |i—j| > 1. Let w and s be defined by w = 5;(¢) = s;(r)
and s = s;(r) = s;(r); the situation is depicted in Figure 18. This implies

A A

Figure 18: Paths r and ¢ and two different (7, f)-regular expressions.

fr,w = fs,t and fr,s = fw,t

and moreover,

fr,wfw,t = fs,tfr,s = fr,sfs,t,

thus we obtain

PrwPwit = fr,wfw,tprUipw Ujpt = fr,sfs,tprUinpt = fr,sfs,tPrUjUipt
= fr,sfs,tprUjpsUipt = DrsPst- (412)
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Now the general case follows directly from the special case, i.e. from (4.12), since
by Lemma 4.1.5 every (r, )-regular expression is braid-avoiding and therefore two
(r,t)-regular expressions can be obtained from each other by applying only the
relation (4.10). ]

By using Corollary 4.1.7, the following definition is well-defined:

Definition 4.1.8. Let r and t be two paths ending in A € Pary(n). Let s;, - - - 55, be a
(r, t)-regular expression. If r = t, then we define p,., to be the path idempotent p,.
If r # t, then we define p,, by

p}’,l = pr,r,-km,-l = fr,tprUilpr,-l U2 e prl-kflm,-l Uikpr,-kml-l s

where we set fry = frr o fro i

As a first property, Definition 4.1.8 and Remark 4.1.2 have the following con-
sequences:

Corollary 4.1.9. 1. For two paths s,t of same shape, psp:s = ps holds.
2. The set of elements p; s for t, s € Std(n) of same shape is a basis of TL,.

Proof. Remark 4.1.2 implies the first statement if 7 and s are adjacent, which im-
plies with the inductive construction in Definition 4.1.8 the first statement for all
t and s of same shape. Now to prove the second statement, the first important in-
formation is that p; s is non-zero for all paths of same shape, since p; = psp:s 1S
non-zero. Therefore, if we had a linear relation of the form

Ct.sPts = 0,

t,s€Std(n)
Shape(r)=Shape(s)
then multiplying from the left by p. and from the right by p, would imply that
croPro = 0, hence ¢, = 0 for all 7,0 € Std(n) of same shape. In particular
the elements p; ; are linearly independant. Moreover, knowing that the elements p;
form a complete set of idempotents, 7L, decomposes as

L, = @ pitp,= B Lo,

t,seStd(n) 1,5€Std(n)
Shape(r)=Shape(s)

where we used Corollary 3.1.26 for the last equation. But since p;; € p;TL,p;,
which is one dimensional by Corollary 3.2.11, this implies that the elements p;
generate TL,, as a vector space, thus they form a basis. O

The equation p; ps: = p; actually has a stronger consequence, which means
that the basis p; s is a set of matrix units:

Proposition 4.1.10. For three paths w,t and r of same shape, p,,;p:, = Pw.r holds.
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Proof. Lets = s;, --- s;, be a (w, )-regular expression and s" = s;,,, - - - 5, a (¢, 1)-
regular expression. Let m < k + h be the length of a (w, r)-regular expression. We
proceed by induction over k + h — m.

1. If m = k + h, we see that ss’ must be a (w, r)-regular expression: It satisfies

(Sig,p -+ Si)w) =rand (4.13)
(si, - i,)(w) is standard forall 1 <m < k + h. 4.14)

Since k + h = m, ss’ must also be minimal with that property.

2. Assume that m < k + h. Although ss’ is not minimal, it satisfies (4.13) and
(4.14). By the deletion condition (cf. (Hum90, Section 1.7)), there exist
1 <m < m' <k+ hsuch that

S,‘m+l s S,‘m, = S,‘m et 8 (415)

m'-1°

It is clear that m,m’ < k and m,m’ > k are impossible, since the expressions
for s and s’ are also minimal expressions in S, (see Remark 4.1.6), thus
m < k < m’. Without loss of generality, we can assume that m < k is
maximal and m’ > k is minimal. But then (4.15) describes also a (71, t>)-
regular expression, where

tr = (s, - sypw)and rp = (s, -+ 5;)(W).

We use the notation w;,..;, for s;, - -+ s; (w). Since p;, ;, is independant of the
choice of a (t1, )-regular expression, (4.15) implies

Pty = Pwigy iy Wiy iy " PWi i Wiy
= PWinoiy Wimim .y Pwi sy igimeniy Wiy iy
PWiy iy Wiy, iy pwi”1/72“,17,;“.i1 Wiy

where ;,:, means that i, is omitted. But this implies

Pw.iPtr = (pw,wz'l T Pwi iy Wiy ) (pWim“.q Wiperiy " Pwi, iy ,Wim,“.i])

(pwim/ it Wiy iy T PWi iy Wiy )
Pw.wiy Piy, iy Wig.oiy PWi_iy Wi,y iy pwimrfzu.;;;mil’Wim/fl“,l’};u.il
Pwi iy
(pw,-m/...;l Wiy PWi iy Wiy )
= Pww;, P (4.16)

w. = W T T Ly
L/ P /B IR ) W "R SV I B |
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where we also used

si] ”'Sik+h — sl-l .E;;g; ”'silﬁk
for the last equation. So, (4.16) implies that s;, - -5, -+ § , - - 5j,,, satisfies
(4.13) and (4.14) but is of length & + k — 2. Using induction hypothesis gives
the desired result. O

A good idea would be now to calculate some p;, to get an impression how
the look like. Therefore we are going to express the p;; in terms of an “easy”
diagramatic basis, namely that which has been defined in Section 2.2, see Defini-
tion 2.2.4. In Section 4.2 this is exemplarily done in the case n = 4.

Section 4.2 The case n = 4

We woul like to find out how {p;,t, s € Std(1),4 € Pary(n) is related to the
ceullular basis of TL, consisting of arc diagrams. For n = 4 the branching graph
for the algebras TL; C --- C TL, is indicated in the first picture of Figure 19.

SRR

Figure 19: The branching graph for TL4 with the paths ¢ € Std(4).

We have three partitions of 4, namely the partitions 4 = (4),u = (3,1) and
v = (2,2) with their corresponding tableaux s; € Std(A), s2, 53,54 € Std(u) and
55, S¢ € Std(v). The transition matrix between the basis

{plla P22, P23, P24, P32, P33> P34, P42, P43, P44, P55, P56, P65> p66}

ant the basis

{811,822, 823, B24. 832, 533, B34, P42, Ba3, Baa. B55, B56, P65, Boe )

can be obtained by using Definition 3.1.7 and Definition 4.1.8. Doing so one ob-
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tains the following matrix A:

PZBE oo _pPo@R 1 2 Bl 2L =Bl 1Bl [2IBRR)
(41 4] 41 [4] 4] (4] 41 4 (41 [31141 31141  [3114] [3114]

0 B 21 1 _[2 1 __[2] 1 [2] 1 __12] [3]-1 [31-1 _ [2113]+[2]
[4] 41 4] 41 [3]14] 31141 [4] [3114]  [3]14] (31141 [3114] 3][4] [31(4]
00 2 _1 o P2 B g o _ 1 o __1_pE o[
[4] (4] [3114] [3][[24]] [3114] 31141 [3][4] [31(4] (4] (4]
1 1 1 2

00 0 ™ 0 ([)z] T B4 0 0 [3114] 0 [3114] 0 [3114]

1 1 1 1 1 1

00 0 0 1 -5 i @m m @&m m H-opmo !
21 _ 1 11 1 1 1 __1

00 0 0 0 g o 0 Bl 28 Bl 2B 26 2206
1 1 1 1

A= 00 0 0 0 0 g1 0 0 -pg 0 - O o
Bl _ L L —
00 0 0 0 0 0o L3 0 0 ) 1
1 1

00 0 0 0 0 0 0 1 -z O 0 -5 o
1 1

00 0 0 0 0 0 0 0 o 0 0 0 ~o7
1 1 1 1

6o 0 0 0 0 0 0 0 0 Bl TRIB CRIB 2RE)
1 1

00 0 0 0 0 0 0 0 0 0 oy 0 i
00 0 0 0 0 0 0 0 0 0 0 L L
2] g

00 0 0 0 O 0 0 0 0 0 0 0 L
[2]

“4.17)

Therefore our hope is to show, that the set
{Ds.s> 8,1 € Std(A), A € Para(n)}

is related via an upper triangular relation to the cellular basis
{Bs.s> s, t € Std(2), A € Pary(n)).

This will be done in Section 4.3.

Section 4.3 Relating with a cellular basis

Our first goal is to express the path idempotents p; in terms of the cellular basis
B:.s- The coefficents involved will depend on the possibilities to construct the path
t by “replacing” €;(r) = 1 by —1. To do so, we first need to find the right indices j,
where this will be done.

Definition 4.3.1. Lert = (1) = AV — .. = A®) pe a path ending in AW =2
withd = Ay — Ap. Forh =1,...,d the path r;l is defined to be the minimal subpath

=1 = AN 5 AU, (4.18)

such that A% = 2 > h for all k > jy.

Remark 4.3.2. 1. By the choice of r, we see that A% = (/l(lj”_l) +1, /l(zj”_l)).
Moreover, rj, existsforh = 1,...,d since 1] —A; > h. In the branching graph,
this means that after the endpoint of r;, the path ¢ is weakly to the right of the
line defined by all partitions u with u; — yp = h, see also Figure 20.
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#,(1)

hil o R+

Figure 20: Paths ry, rpi1 and #,(¢).

2. The path r, is a subpath of ry, if and only if £ < & and moreover the number
J1,--., ja are exactly the labels of the vertical lines on the top edge in the
diagram g;. (see Definition 2.2.4).

3. Clearly the subpath r;l satisfies €;,(rp) = 1 = €;,(2).
The index j;, will be the right place to replace €;, = 1 by —1:

Definition 4.3.3. Ford > 2andh € {1,...,d—1} the path #,(¢) € Std(1; -1, 2 +1)
is defined by:

(1)) = {6’(’)’ LF e (4.19)
-1, Q= jp.

It is clear that #,(¢) <t forall h € {1,...,d — 1}. An example of #,(¢) with sub-
paths rj, and rj1 is given in the second picture of Figure 20. When p, is described
in the basis S, 5, the coefficent of 3, ; will depend on the ways to construct ¢ and s
out of the maximal path ™ € Std(n). However, to prove the later statements, we
will need a slight generalization of the previous definition:

Definition 4.3.4. For A € Pary(n) withd = A1 — Ay and u € Pary(d), the partition
AMtu is said to be the partition (1) — ua, Ay + wo2). Moreover, for t € Std(1) and
r € Std(w), the tableau t#r € Std(A#u) is defined as follows:

(1), ifiz jpVh=1,....d,
ety = {90 TTE D (4.20)
e(r), ifi= jp
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Remark 4.3.5. 1. If r has only one number k in the second row corresponding
to a horizontal line (4, k) in (3., then we obtain that r#r = #,(r). This was the
example in Figure 20.

2. uy + = A1 — Ap implies that
(M —p2) = (Ao +p) =1 — =2y =+ po — 240 =y — a2 2 0,
thus A#u is a well-defined two-row partition of 7.
3. Ttis clear, that if 7 # #9, i.e. if u» # 0, then we obtain that r#r <.

The reason why to define this composition of tableaux is the following quite
obvious fact, which is clear by the construction:

Lemma 4.3.6. [ft € Std(1) and r € Std(u) where u € Pary(1; — Ay), then
Bor - Br. = Betn - 421)

The following lemma will be needed to prove the coefficent formula: It will be
proven by using induction and appling Definition 3.1.1.

Lemma 4.3.7. If x € TL, 4, then

j
S A

e
=0 [d]‘ d—l//l

Proof. Since pg = pg - (pa—1 U 1), it suffices to show the equation:

J
U ceee
—/ E( ) [d] D ( )

Clearly (4.22) holds for d = 1, therefore d is assumed to be greater than 1. Then
Definition 3.1.1 and the induction hypothesis imply together that

Y E SR [d—l \\\/

d

:#:"]U [d 3 )dlj[d_l]l d;z — I
=##U+Z<l>‘““ ////
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We actually need a certain consequence of the previous lemma as well. There-
fore, if r is a path, let I be the set of indices i such that €;(r) = —1, i.e. I consists
of the numbers in the second row of the tableau r. Let #7'(r) be the set of pairs
(j,o) such that j € I and #;0- = r. Then Lemma 4.3.6 has the following conse-
quence:

Corollary 4.3.8. If x = ) ;estd(1) YoBo,- is an element of TLy, 4 where d = A1 — A3,
then

d |

d—
;( Y J ‘ / / weStd((A; AZJ;)V,BW,-

holds, where

[/]
v = (=D 2 4.23
y W; W( I (4.23)

Proof. If x = ¥ ;estd(1) YoPo,.» then

xul= Z YoBo+, € TLpt1,d4+1. (4.24)
oeStd()

Now for j=1,...,dlet£; € Std((d + 1, 1)) be the tableau of shape (d + 1, 1) with
J + 1in the second row, so that j, . is given by

J
I
By using Lemma 4.3.6 and the first part of Remark 4.3.5, the equation

Bo, - Bej- = Bjio) (4.25)
holds, and therefore (4.24) and (4.25) imply together

SN // S 5 s

j=1 j=1 oeStd()
d
Z )d J ] Z YUﬁ#j(U+),~’
j=1 oeStd()
which implies (4.23). O

Now having shown a first technical lemma, it is time to define the coefficents
involved to express p, in terms of basis elements £; :
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Figure 21: A path r and the sequence FO_ D D 3 B O =

Definition 4.3.9. Let w € Std(A) be a tableau of shape A € Pary(n).
1. J, is defined as the set of sequences (W, ..., w?)) of tableaux such that
(a) wD = #,wk for some h and

(b) w2 =w and w® = ™,

2. A sequence w € J,, is said to dominate another sequence v € J,, denoted by
w 2V, if and only if WO <v® forall 1 <k < Ay. If J- C J, denotes the
singleton containing the unique minimal sequence r € J, with respect to <,
then the set J), is defined to be the subset of w € J,, such thatw <r € J/.

3. For a sequence w and two successive w*= Y and w® let u be the shape of
their maximal common subpath. Then d, is defined by d~, = yuy — .

4. Finally the coefficient C}, is defined to be

d
Ch= > Cywith Cy = [ [(=D™Idk]. (4.26)

welJ, k=1

These coefficents Cj, will be the key ingredient to describe p, in terms of S, ;.

Example 4.3.10.

1. An example of a path r and the only element r € J! is given in Figure 21.

2. In this particular example, the maximal common subpath of #® and ) is
of shape (2,0). In particular d! = 2. Similar one sees d?> = 4,d> = 3,d* =5
and d = 4, which implies

r = (=D2[2]- (=D*[4] - (=1)°[3] - (=1)°[5] - (=1)*[4] = [21[31[4]*[5].
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Remark 4.3.11. 1. A sequence of tableaux w € J,, could also be expressed
by a sequence of indices i1, ..., i such that #; ...#; = w®. In particular,
r € J; corresponds to the unique sequence ji, ..., jg such that j; <--- < jg.

2. Clearly a sequence w is ordered with respect to the dominance order: (n) =
WO s =

3. Since J/ consists only of the element r € J;, C/ is given by
d k
C;=Cr = [ [=1*1a5).
k=1

If p, is a path idempotent expressed by p; = f,xpsX, then x can assumed to
have through-degree d. In particular, if x is written in terms of §,,., we can write
down a first formula to describe the coefficents of the S,,..

Proposition 4.3.12. Let r € Std(A) and let p, = frxpaX, such that x is of through-
degree d = A1 — Ap. Then

. C,,
x= ’;;1) Y Bw.. with yy, = C—}V (4.27)

holds, where C}, is defined in (4.26).

Proof. 1t is easy to see that B,.,0 € Std(4) is a basis of 7L, 4, therefore, since x
has through-degree d, x can be expressed by

x= 3 Yo (4.28)

oeStd(2)
Now there are two cases:

1. If ,(r) = —, i.e. if r = ¥, then

|
[ __ld] .
pr/—fr/ andpr—[dJrl]frf——[dJr frTZ1. (4.29)

Lemma 4.3.7 states that

Il J
d+l ‘.... ‘ ‘

LY o |
=;(—1)d+1—1%|“” ;//Iy,
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which implies with (4.29)

—_— .

d+1 ‘.... ‘

X‘Z( DA d[+ n ‘

| / (4.30)

Howoever, by induction hypothesis y satisfies

y= Z 'Yi;ﬁw,-,

wveSld(Fﬁl ,A2))
d+1
Z Cwand Cy, = 1_[( 1) v[dy]. (4.31)
weJ{v

which implies with (4.28) and Corollary 4.3.8 that

x= > YBeandyi= Y (DTS @432

reStd((r Ap+1)) (w1 () [d * 1]
Since [d + 1] = d? implies (=1)*![d + 1]C = Cy and therefore
(-)™d + 11C7 = ¢, (4.33)

the previous equations (4.31) and (4.33) yield together

d+1

d+1
[ ] wej,g’k 1

d+1

=y =Ll ﬂ( D [dd)

/
welJ),

=y Yy a, (4.34)

m
vell

ad=j

where (4.26) was used for the last equality. Since (j,w*) € # 1(0) if and
only if for every sequence w € Jv’v' , we can add # j(w(d)+) to obtain a sequence
W € J/, and since in this case d4"! = [j] holds, (4.32) and (4.34) together
imply that

= Y A S et Y e-ent Y e

(] whe# (o) v w"‘)e#l L) vszr ved,
wr dv =j

(4.35)
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Moreover, by induction hypothesis we can assume that ), = 0, whenever
w ¢ r’. Therefore, since o # r implies for (j,w*) € # (o) that w ¢ 1/, the
implication

cdr=vy,=0
holds. In particular, (4.27) follows in this case from (4.35) and (??)

2. On the other hand, ife,(r) = +1, i.e. if r = 7, then it follows that

pr = frypa-1y such that f, = f and x = y U L.

Moreover, induction hypothesis assures y = 3 weswg YifBuw.-» Where p = () —

war’

1, 1), which implies

x=yul= Z YoBwt .

weStd(u)
hence y}; = VU ,. Therefore, since induction hypothesis ensures y‘yT , = 0 for
o’ 4 r’, which implies ¥, = 0 for o 4 r, this also shows (4.27) in this
case. O

Now it is time to show the first result of this section, namely the coefficent
formula for p, for §5; ; where ¢ and s are of same shape as r. To do so, we fix some
more notation: For A € Pary(n), M** will denote the subspace of TL, spanned by
Buv such that Shape(u) = Shape(v) < 4; M is a two-sided ideal in TL,.

Corollary 4.3.13. Ifr is a path ending in A € Pary(n), then

Pr=Drr = Z Cz,wﬂu,w (mOd Md)a
(u,w)(r,r)
where the sum runs over all pairs (u, w) such that u < r and w < r. Moreover
cc
= e (4.36)
u,w r C;C,{

holds, where C}, is defined in (4.26) and f, in Definition 3.1.5.

Proof. 1If p, = f,xpa4X, then x can assumed to have through-degree d, so it is pos-
sible to apply Proposition 4.3.12, which yields

. C,
x= ;;ﬂ) Y By with 5 = C—W (4.37)

Furthermore, p; can be expressed by

pa= Y. VBB (4.38)

7,meStd(d)
Shape(r)=Shape(r)
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since Brr = B.[.x is a basis of TL,;. Applying (4.37), (4.38) and Lemma 4.3.6
now implies

DPr :frdex:fr[ Z J’éﬁfr,-] Z Yg,nﬂr,ﬂ-,n [ Z 7();/3~,5J

oeStd(1) Shapfész)s:lgﬁz;e(ﬂ) £eStd(Q)
d d
= Y VA BB BBs = D VNV Pt itn (4.39)
o,T,m,E o,T,m,E

where the last two sums range over all o, ¢ € Std(4) and 7, 7 € Std(d), such that T
and m are of same shape. Since Shape(c#7) < Shape(o) = A for 7 # D and since
the coeflicent y,w) 4o of 1 in p, is 1, (4.39) actually says that

e = VsV (4.40)
But then the result follows from (4.39), (4.40) and (4.37). ]
We obtain an important consequence:

Corollary 4.3.14. If r is a path, then the coefficent of B, in p, is given by c; . = f;,
where f, is defined in Definition 3.1.5.

Example 4.3.15. We reconsider the example of Section 4.2.

1. We want to use (4.26) to calculate the coefficent y;22 = 33 of By,.5; = B33
in py, 5, = p2. The set J;, = J52 has only one element, namely the sequence
s2 = (1, 52), which implies by applying (4.26) that

C3 =C2=Cs, =(-1)°[3], (4.41)

since the maximal common subpath of s; and s, is of shape (3,0). The set
J, also consists only of one element, namely the sequence s3 = (s1, s3) and
moreover, S3 < S since s3 < sp, which lets us obtain

C3 =C = (-1)’[2], (4.42)
since the maximal common subpath is of shape (2, 0).
Now applying (4.36) yields
GG _BIRP _ 2P

C3C2 4B Bl

22
Y33 = fsz

but this is the calculated entry corresponding to 833 in p; given in (4.17).

2. Also the set J;; has only one element, namely the sequence s4 = (s, 54)
and since the maximal common subpath of s4 and s; is of shape (1,0), the
equation

Ci=C2=(-D[1]=-1
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holds. Furthermore, we see that

GG _pBl1_ 1

C3C3 41B1F (31141

Yis = fa
which is the coefficent of 844 in py; calculated in (4.17).

3. The previous two examples imply that

CiC3 _BIEDR2I _ (2]
c3C3 M BP T BIET

22
743 = f 52

But this is again the coefficent of 843 in p».

4. On the other hand Jy; = Js has two elements, namely the sequences s5; =
(s1, 52, 85) and s5, = (s1, 53, §5), however, S5, <S5 since s3 < $7, thus

CI = C = (~1[2(-D[1] = [2],

since the maximal common subpath of s3 and s is of shape (2, 0) and that of
s3 and s5 is of shape (2, 1). Also Jg = J5 consists of two elements, namely

the sequences s¢; = (51, 5256) and sg» = (s1, 54, 56), but s¢; £ Ss; since
s> 4 s3. In particular, Cg consists only of the element sg, and therefore C g
is given by

Co=Cy=(=D(=D =1,

since the maximal common subpath of s; and s4 is of shape (1,0) and the
maximal common subpath of s4 and sg is of shape (2,1). So together we
obtain

505
C.Ce 11 1

c3c3 T BIRE - 12PBI

Yoo = Vese = [is
which is the coefficent of B¢¢ in pss5 given in (4.17).

Remark 4.3.16. Note that the above example is not a particular good example,
since n = 4 does not include non-comparible paths of same shape and moreover all
sets J% consist only of one element. However already for n = 5, we obtain 42 basis
elements S, 5, which is tedious to calcalute in detail...

The next step is to prove, that also the elements p;, satisfy an relation of the
form

— s, A
pst= . cBuy  (mod MY,

(u,v)<(s,1)

where s, ¢ € Std(1). This is now quite easy by exploiting the properties of the path
idempotents. We fix some more notation:
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Definition 4.3.17. . If s, t are two paths of same shape such that s = si(t), then the
coefficent g, is defined by

f:&‘,h ljf‘s < t’
8st =

Jrse if s>t
Inductively, for two arbitrary paths r and t of same shape and an (r,t)-regular
expression s;, ... s;,, the coefficent g, is defined to be

8rit = 8rriy 8riyrigiy " 8rig_ iy iy

A priori the coefficent g,; depends on the choice of the (r, f)-regular expression.
But the following theorem, proving a coefficent formula for p;,, implicitly also
shows that g, is independant of this choice.

Theorem 4.3.18. Ifr,t € Std(1) for A € Pary(n), then

Pz ). hBuw  (mod M),

(u,w)(r,1)

and moreover for u,w € Std(Q), the coefficent C;”tw is given by

cict
Clr;,lw = frgr,t_C;,C‘t; ) (4.43)
where g, is defined in Definition 4.3.17 and C}, in (4.26).
Proof. Let s;, ---s;, be a (s, f)-regular expression. To shorten formulas, we will

abbreviate the path Tijiys if it arises as an index, by the symbol (j). With this
notation in mind, we also write

po) = JiyXpakip and pr = pe) = X©)Pax)-
By using Definition 4.1.8, p,, is expressable by

k k
Prt = f(O),(k)P(O) l_l Ui_,-p(j) = f(O),(k)f(O)x(O)de(O) l_l f(j) Ui_,-x(j)pd;c(j)
J=1 j=1
k-1
= fo.w X0 PaXo) l_[f(j)Uin(j)pdfC'(j) JaoUiXgypaX
j=1
= f10).00 S0 X0 PaYkPaX k), (4.44)

where
k-1

Yk = X0) []—[ U iﬂ(j)l’df(j)] JaoUixa
j=1

is an element of 7L,. In particular the statement of the theorem follows then by
(4.27), (4.44) and the following equation

J0),00 )X PaykPaXd) = &),k f(0)X(0)PaXik) (4.45)
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Proof of of the equation (4.45). If k = 1, i.e. if r = s;¢ and r < ¢, then an easy
diagramatic argument, which was done similarly in Section 3, for example in the
proof of Proposition 3.2.10, shows that

JaoypaxoyUixqypa = pa. (4.46)
But this implies that
Jfo.mfoxopayipaXa) = fo).mfoxopaxo)fi Ui xaypaXa)
= fo.mfoxopdka) = gon.mfoyXopaka).  (4.47)
If > ¢, then similarly to (4.46), one can show that
JoypaXoyUi, x1ypa = Pa,
implying
Jo.aJoyxopayi1paXay = fo).mfoyXo paXo) fiy Ui xaypaXa)
= fon.mJmxopaXa) = fu)0foXopdXa)
= 80),()J)X©) PaXq)- (4.48)

Now (4.47) and (4.48) cover the case k = 1.
On the other hand, if k > 1, then applying (4.45) for y;_; and for the case k = 1
yields

J0),00f0) X0 PaykPaXay = fiuk-1),00.J0),4=1) J(0)X(0) PaYi—1 PaX(k-1) ko) Ui Xy PaXiio
= fik=1),(08(0),(k—1)J(0)X(0) PaX(—1) Jio Ui, Xy Pa Xk
= 8(k-1),08(0),k-1) S0) X0 PaX(k) = 8(0),(6) [(0)X(0)PadX(k)-
Thus we have shown (4.45). [ [

The previous result generalizes Corollary 4.3.13. We stress the following im-
plicit statement:

Corollary 4.3.19. The cellular basis B; s and the basis p; s are in an upper trian-
gular relation with respect to the dominance order.

Example 4.3.20. We finish by discussing the example in Section 4.2. By Defini-
tion 4.3.17 the coefficent g4, for the paths s, and s, of Figure 19 is given by

2
fafs = —]¥ =[3].

Multiplying with fi = and using (4.41) and (4.42) gives that

C;C3 )
= —[ ]l _

= fign oo cicz T 2173l

which is the coefficent of 843 in p4, we calculated in (4.17).
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