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Section 1

Introduction

Section 1.1 Motivation

Let glr be the matrix algebra over the complex numbers. The algebra glr acts
naturally from the left as a complex Lie algebra on a r-dimensional complex vector
space V with a chosen basis by left matrix multiplication. Moreover, this action
induces a left action of glr on V⊗n, the n-fold tensor product of V . However, V⊗n

also admits a right S n-module structure, where S n denotes the symmetric group in
n symbols, and secondly this right action commutes with the left action of glr. If
U(glr) denotes the universal enveloping algebra of glr and CS n the group algebra
of S n, then this means that V⊗n is a U(glr)-CS n-bimodule. In fact, the U(glr)-left
action and the CS n-right action do not only commute, the images of their actions
in the endomorphism ring of V⊗n are actually the centralizers of each other.

Now since CS n is semisimple, the double centralizer theorem (cf. (Kna07,
Theorem 2.43)) can be applied to obtain a decomposition of V⊗n into summands
of the form Vλ ⊗ S λ, where Vλ is a simple U(glr)-module and S λ is a simple CS n-
module. This statement is known as the classical Schur–Weyl duality (cf. (Wey39))
and was first proven without using the double centralizer theorem.

However, there exist quantized versions of the algebras U(glr) and CS n: The
complex quantum group Uq(glr) (see (HPK91, Section 0)) and the complex Hecke
algebra Hn(q) associated to the symmetric group S n (cf. (Hum90, Section 7.1)),
where q is a non-zero complex parameter. Moreover, if Hn(q2) is semisimple, i.e. if
q2 is not a kth root of unity for k = 2, . . . , n (see (HST15b, Theorem 5.1)), then one
can quantize this Schur–Weyl story: The vector space V⊗n admits a Uq(slr)-Hn(q2)-
bimodule structure, such that the images of the actions of Uq(slr) and Hn(q2) are
the centralizers of each other (cf. (Jim86, Proposition 3)) and V⊗n decomposes
similar as in the classical case, now by using the double centralizer theorem, into
summands Vλ⊗S λ, where Vλ is a simple Uq(glr)-module and S λ is a simple Hn(q2)-
module. This statement is the quantized version of Schur–Weyl duality for Uq(slr)
and Hn(q2).

Identifying V⊗n as q-tensor space and using (Mur95, Theorem 6.3) and (Mur95,
Theorem 7.2) or using (DJ86, Corollary 4.12) actually implies for n ≥ r, that the
Hecke algebra Hn(q2) does not act faithfully on V⊗n; in particular, the image of
its action beeing the centralizer of the quantum group Uq(glr) is a proper quotient
of Hn(q2). In the case where r = 2, this quotient turns out to be another known
object, namely the Temperley–Lieb algebra TLn(q), which is a diagram algebra of
so-called “planar Brauer diagrams”, see also (Jon85). We are primarly interested
in the study of this algebra, the Temperley–Lieb algebra TLn(q). Therefore, by
examining the kernel of the Hn(q2)-action, one can describe the representation the-
ory of the Temperley–Lieb algebra via the Hecke algebra, supposed that Hn(q2) is
semisimple, where q-Schur–Weyl duality holds.

However the Temperley–Lieb algebra TLn(q) can be studied intrinsically with-
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out using q-Schur–Weyl duality. If q2 is a kth root of unity for a k ≤ n, then TLn(q)
is not semisimple anymore (cf. (HST15a, Proposition 5.1)), neither is Hn(q2) (see
(HST15b, Theorem 5.1)) and nor can q-Schur–Weyl duality be applied. Neverthe-
less, we have some tools at hand to examine the non-semisimple Temperley–Lieb
algebra. In the semisimple case, decomposing TLn(q) into simple TLn-modules is
equivalent to describe all minimal central idempotents TLn(q). Therefore, a good
approach would be to describe the minimal central idempotents, also called (higher
order) Jones–Wenzl projectors (cf. (Wen87),(GW93) and (CH15)), by explicit for-
mulas and try to move as many of these formulas as possible to the non-semisimple
world. In (CH15) these Jones–Wenzl projectors are described with aid of a com-
plete set of pairwise orthogonal minimal idempotents pt in TLn(q), which can be
indexed in a pretty way by paths t in the branching graph of TLn(q), supposed that
TLn(q) is semisimple. However, if TLn(q) is not semisimple, then these minimal
idempotents are not all well-defined and hence another complete set of idempotents
is needed to describe minimal central idempotents. In (GW93) a sufficient number
of well-defined idempotents in the non-semisimple TLn(q) is found along with a
description of the minimal central idempotents modulo the radical in TLn(q).

Since the Temperley–Lieb algebra is an example of a diagram algebra, the
Jones–Wenzl projectors and also the idempotents presented in (GW93) can be ex-
pressed by diagramatic language. However, the arguments presented in (GW93)
are of pure algebraic nature, so our main interest is to translate all the proofs of
(GW93) into diagramatic language. When dealing with the diagramatic presenta-
tion of the Temperley–Lieb algbera, one soon encounters a certain basis consisting
of arc diagrams, which is an example of a cellular basis (cf. (GL96)) equipping the
algebra TLn(q) with a cellular structure. If TLn(q) is semisimple, then the complete
set of pairwise orthogonal minimal idempotents pt gives rise to a basis pt,s of ele-
ments in non-trivial subspaces ptTLn(q)ps and a natural question would be to relate
these elements pt,s to the cellular basis consisting of arc diagrams. This relation
turns out to be an upper triangular base change, which we believe was not known
yet. As a side result, a partial coefficient formula for the minimal idempotents pt

expressed in the cellular basis consisting of arc diagrams is obtained.

Section 1.2 Overview

This master thesis is seperated into three sections.
Section 2 is about recalling the definition and commonly known facts of the

complex Temperley–Lieb algebra TLn(q) and the complex Hecke algebra Hn(q),
both depending on a natural number n and a complex non-zero parameter q. In
Section 2.1 these definitions are stated and moreover the algebra TLn(q) is identi-
fied as a quotient of Hn(q2).

Two important notions involved in describing the algebras TLn(q) and Hn(q)
are those of partitions and tableaux. Section 2.2 starts by describing a cellular
basis of TLn(q) consisting of arc diagrams βt,s indexed by pairs of tableaux t and
s of same shape λ, where λ ranges over Par2(n), the set of partitions of n with at
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most 2 rows. Partitions and tableaux are also used to describe the simple modules
of the algebras TLn(q) and Hn(q), in case they are semisimple: The set of simple
modules S λ of Hn(q) (resp. TLn(q)) is parametrized by Par(n), the set of partitions
of n (resp. Par2(n)). S λ has a basis consisting of tableaux t of shape λ, such that
the algebra actions can be described by explicit formulas. Moreover, the module
structures are compatible with the identification of TLn(q) as a quotient of Hn(q2).

Section 2 ends with Section 2.3, which is devoted to sketch a proof of a quan-
tized version of Schur–Weyl duality, which in turn yields another description of
the Temperley–Lieb algbera. If V is a complex r-dimensional vector space with
a chosen basis, then it can be equipped with an Uq(glr)-module structure. It actu-
ally suffices to consider the quantum-group Uq(slr), since the image of its action
coincides with that of Uq(glr). Using the comultiplication of Uq(slr), the n-fold
tensor product V⊗n, becomes a Uq(slr)-module. Moreover, V⊗n also admits a right
Hn(q2)-module structure commuting with the left Uq(slr)-action. Now if Hn(q2)
is semisimple, q-Schur–Weyl duality decomposes V⊗n into summands of the form
Vλ ⊗ S λ, where Vλ is a simple Uq(slr)-module, S λ a simple Hn(q2)-module and
λ ranges over Parr(n), the set of partitions of n with at most r rows. Analyzing
the kernel of the Hn(q2)-action on V⊗n shows for r = 2, that the Temperley–Lieb
algebra TLn(q) is isomorphic to the centralizer EndUq(sl2)(V⊗n) of Uq(sl2) in the
endomorphism ring of V⊗n.

Section 3 is the core of this master thesis, we mainly follow (GW93). Our
presentation differs slightly, we tried to connect (GW93) with the more modern
diagramatic presentations of the Temperley–Lieb algebra. To understand the non-
semisimple algebra TLn(q), we follow the “evaluation principle”, meaning that we
show structure results for semisimple generic algebra TLn(v) and deduce by “eval-
uating” at v = q corresponding results for the non-semisimple version. Section 3
is therefore devided into two parts, the first is devoted to the generic version and
the second to the non-semisimple one. However, we stress that all statements in
Section 3 only use diagramatic arguments.

Section 3.1 starts in Section 3.1.1 by decomposing TLn(v) with aid of q-Schur–
Weyl duality into summands of the form EndUv(sl2)(S λ ⊗ Vλ) � EndC(S λ). This
leads to a shift of perspective, instead of studying simple TLn(v)-modules, the focus
is turned onto the minimal central idemptents zλ ∈ TLn(v) corresponding to the
identity in End(S λ). The special case λ = (n) is the first case to treat: z(n) turns
out to be the nth Jones–Wenzl projector pn ∈ TLn(v), which can be defined by
a diagramatic recursive rule. Following (CH15), we continue in Section 3.1.2 by
introducing path idempotents pt for t a standard tableau of shape λ in Par2(n).
The path idempotents are also defined by a recursive diagramatic rule and form
a complete set of pairwise orthogonal minimal idempotents in TLn(v). Moreover
their action on S λ is particularly simple: pt fixes the basis element t ∈ S λ and sends
every other basis element s ∈ S µ for arbitrary µ to zero.

Motivated by the action of the path idempotents on simple modules, the higher
order Jones–Wenzl projectors pn,k are defined in Section 3.1.3 by diagramatic lan-
guage, such that they correspond to the minimal central idempotents zλ: For λ in
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Par2(n) with k = λ1−λ2, the kth higher order Jones–Wenzl projector pn,k is defined
to be the sum of all path idempotents pt such that t is of shape λ.

To push formulas concerning elements in the generic algebra TLn(v) to the
non-semisimple complex version TLn(q), where q is a 2lth root of unity, we start
Section 3.2 by clarifying, which elements of the generic Temperley–Lieb algebra
actually give rise to elements in the complex non-semisimple version. These el-
ements are called evaluable and are roughly speaking linear combinations of arc
diagrams, where all coefficients are elements in C(v) without a pole in q. Not all
path idempotens pt turn out to be evaluable, but certain sums of those are. The
involved notions are:

• The mth critical line consist of all partitions ν, such that ν1 − ν2 + 1 = ml.
Such a partition is called critical and so are its tableaux.

• If r is the maximal critical subtableau of t ending on the mth critical line, then
t̄ is defined to be the path obtained from t by reflecting t \ r in the branching
graph about that mth critical line.

In Section 3.2.1 we try to determine which p[t] := pt + pt̄ are evaluable and more-
over we construct new evaluable idempotents (not necessarily path idempotents)
out of old ones. This contains a couple of rather calculation heavy arguments,
which are needed for Section 3.2.2. The former now contains the main results of
this master thesis, including a description of the maximal semisimple quotient and
the radical of TLn(q). To understand the main statement, the following terminology
is needed.

• For λ in Par2(n), [λ] denotes the orbit of λ under the action of the reflection
group of Z acting on Par2(n) by reflecting about critical lines in the branching
graph. Two partitions µ and ν in [λ] are called adjacent, if there is exactly
one critical line between µ and ν.

• For a non-critical partition λ ∈ Par2(n) between the mth and the m + 1th
critical lines, L(λ) is defined to be the set of tableaux of shape λ with proper
maximal critical subtableau on the mth critical line.

• If λ is critical, then fλ is the number of tableaux of shape λ. On the other
hand, for λ non-critical, zL

λ is the sum over all p[t], where t ranges over L(λ),
and f L

λ denotes the cardinality of L(λ). Furthermore z[λ] is defined to be the
sum of all zL

ν , where ν is ranging over [λ].

The results of Section 3.2.2 are summarized be the following theorem (see Theo-
rem 3.2.28 and Theorem 3.2.30):

Theorem ((GW93)).

1. If λ is critical or to the left of the first critical line, then zλ(q) = zL
λ(q) is a

minimal central idempotent in TLn(q). Furthermore zλTLn(q) � M fλC.
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2. If λ is non-critical and to the right of the first critical line, then zL
λ is evaluable

and zL
λTLnzL

λ(q) �
{(

A B
0 A

)
, A, B ∈ M f L

λ
C
}
.

Moreover, z[λ](q) is a minimal central idempotent. The radical of z[λ]TLn(q)
is nilpotent of order 3 and spanned by the spaces zL

µTLnzL
ν (q) for adjacent

diagrams µ, ν in [λ] and by the algebras rad(zL
µTLnzL

µ(q)) for µ ∈ [λ]. The
maximal semisimple quotient of z[λ]TLn(q) is isomorphic to

⊕
µ∈[λ] M f L

µ
C.

Section 4 is about consequences of Section 3.1. Since the pt form a complete
set of pairwise orthogonal idempotents, TLn(v) decomposes into subspaces of the
form ptTLn(v)ps, which are all at most one-dimensional. In particular, there exists a
basis indexed by pairs of tableaux s and t of elements pt,s in the non-zero subspaces
ptTLn(v)ps. In fact, ptTLn(v)ps is non-zero if and only if s and t are of same shape,
thus the set of elements pt,s indexed by pairs of tableaux of same shape is a basis
of TLn(v). In Section 3.2.1 this basis was already implicitly used, however it was
not explicitly defined. The aim of Section 4.1 is to define this basis in a consistent
way, such that it satisfies the following properties:

• If t = s, then pt,t coincides with the path idempotent pt (see Definition 4.1.8).

• If t, s and r are of same shape, then pt,s ps,r = pt,r (see Proposition 4.1.10).

In Section 4.2, the basis for TL4(v) is expressed in the basis βt,s by explicit calcula-
tion. If one orders both bases by a well-known partial order, the dominance order,
the matrix expressing the base change turns out to be upper triangular. We show in
Section 4.3, that this is no coincidence, but that in general the basis of elements pt,s

and that of elements βt,s are in an upper triangular relation. As a side result, a par-
tial coefficient formula is obtained. The results of Section 4.3 can be summarized
by the following theorem (see Theorem 4.3.18):

Theorem. The basis pt,s is related by an upper triangular relation with respect to
the dominance order to the cellular basis βt,s consisting of arc diagrams. Moreover
for u,w, t, s of same shape, the coefficent ct,s

u,w of βu,w in pt,s =
∑

uEt,wEs ct,s
u,wβt,s can

be described by an inductive formula.
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Section 2

The Temperley–Lieb algebra

Let q ∈ C× be a complex number. In Section 2.1 the definition of the main ob-
ject of this thesis is recalled, the complex Temperley–Lieb algebra TLn(q) in n
strands, which is a unital associative C-algebra depending on the parameter q. To
understand its representation theory and to find out, when it is semisimple, it is con-
venient to consider another well-known algebra, the Hecke algebra Hn(q) of type
A. Although the reader might know these algebras, we summarize in Section 2.2
known facts about the representation theory of TLn(q) and of Hn(q) and moreover,
we get to know for which q they are semisimple: TLn(q) is semisimple if q2 is not
a kth root of unity for k = 2, . . . , n and Hn(q) is semisimple if q is not a kth root of
unity for k = 2, . . . , n. Semisimplicity allows to apply another powerful tool, the
double centralizer theorem, which results in a version of a Schur–Weyl duality in
Section 2.3. Without semisimplicity a more detailed study is necessary, this aspect
is treated in more detail in Section 3 and excluded in this section.

All the results in this section are already known, but we believe that it is useful
to have them combined at hand, instead of citing them only.

Section 2.1 The Hecke algebra and the Temperley–Lieb algebra

In this section q will always denote an element in C× = C \ {0}. v on the other hand
will always denote a generic parameter.

Although one can define the Hecke algebra for any Coxeter system, see for
example (Hum90, Section 7.1), we only state the definition of the Hecke algebra
associated to the Coxeter system S = {s1, . . . , sn−1} ⊂ S n of simple transpositions
si in the symmetric group S n; this is the Hecke algebra of type An−1, which we will
call in this thesis the Hecke algebra in n-strands or just the Hecke algebra.

Definition 2.1.1. 1. The generic Hecke algebra in n-strands over Z[v, v−1] is
defined to be the unital, associative Z[v, v−1]-algebra HZn (v) generated by
T1, . . . ,Tn−1 subject to the following relations:

T 2
i = (v − 1)Ti + v, if 1 ≤ i ≤ n − 1, (2.1)

TiTi+1Ti = Ti+1TiTi+1, if 1 ≤ i ≤ n − 2, (2.2)

TiT j = T jTi, if |i − j| > 1. (2.3)

2. Moreover, the generic Hecke algebra in n-strands over C(v) is defined by
setting Hn(v) := HCn (v) := HZn (v) ⊗Z C(v).

3. Finally, for q ∈ C×, the complex Hecke algebra in n-strands is defined to be
Hn(q) := HCn (q) := HZn (v) ⊗Z[v,v−1] C, where v acts on C by substitution.

One sees easily, that the generators Ti are invertible with inverse T−1
r = q−1(Tr−

q + 1). Now, for w ∈ S n, the element Tw is defined by

Tw := Ti1 . . . Tir ∈ HZn (q),
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where w = si1 . . . sir is a reduced espression for w. By (2.2) and (2.3) this is
independant of the choice of the chosen reduced expression and moreover, the
following proposition, which can be found in (Hum90, Section 7.1), identifies the
set of elements Tw,w ∈ S n as a basis of HZn (q):

Proposition 2.1.2. The set {Tw,w ∈ S n} is a basis of the Hecke algebra HZn (q).

For d ∈ Z≥1 and q , 1, the notation of the usual quantum integers, defined by

[d] = [d]q = qd−1 + qd−3 + · · · + q−d+1 =
qd − q−d

q − q−1 ∈ Z[q, q−1],

is used. The same goes for v. The main object of study of this thesis is introduced:

Definition 2.1.3. 1. The generic Temperley–Lieb algebra in n-strands over
Z[v, v−1] is the unital, associative Z[v, v−1]-algebra TLZn (v) generated by
U1, . . . ,Un−1 with relations

U2
i = [2]vUi, if 1 ≤ i ≤ n − 1, (2.4)

UiU jUi = Ui, if |i − j| = 1, (2.5)

UiU j = U jUi, if |i − j| > 1. (2.6)

2. Secondly, the generic Temperley–Lieb algebra in n-strands over C(v) is de-
fined to be TLn(v) := TLCn (v) := TLZn (v) ⊗Z[v,v−1] C(v).

3. Moreover, for q ∈ C× the complex Temperley–Lieb algebra in n-strands is
defined by TLn(q) := TLCn (q) := TLZn (v) ⊗Z[v,v−1] C, where v ∈ Z[v, v−1] acts
on C by substitution.

For the rest of this section, only the complex versions of the Hecke algebra and
the Temperley–Lieb algebra are needed, the generic version will return Section 3.
However, the theory for TLn(q), where q is not a root of unity, is the same as for
TLn(v). The following theorem establishs a connection between TLn(q) and Hn(q2):

Theorem 2.1.4. The maps

φ1 : Hn(q2)→ TLn(q), Ti 7→ qUi − 1, (2.7)

φ2 : Hn(q2)→ TLn(q), Ti 7→ −qUi + q2 (2.8)

are surjective morphisms of algebras. Moreover ker φ1 is generated by

T1T2T1 + T1T2 + T2T1 + T1 + T2 + 1.

and ker φ2 by q−6T1T2T1 − q−4T1T2 − q−4T2T1 + q−2T1 + q−2T2 − 1.

Proof. It is easy to check that φi respects the relations and defines a surjective
morphism of unital algebras. That the element is in the kernel can be checked by
direct computation. That it spans the kernel follows by analyzing the idempotents
in the Hecke algebra in the kernel of the action induced by Schur–Weyl duality.
However, we do not have a good reference and refer to (Wee12, Section 3.2). �
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In the following pages, we will use the presentation of TLn(q) as a quotient of
Hn(q2), however we choose to work with φ1 instead of φ2, to stay compatible with
the notions in (GW93), which is the main source of Section 3. But this choice does
actually not amount to greater disadvantage:

Remark 2.1.5. φ1 and φ2 are related via φ1 = α ◦ φ2 and φ2 = φ2 ◦ β, where

α : TLn(q)→ TLn(q),Ui 7→ −Ui + [2],

β : Hn(q)→ Hn(q), Ti 7→ −Ti + q2 − 1.

It is commonly known that the Temperley–Lieb algebra TLZn (q) has a Z[q, q−1]-
basis consisting of “planar Brauer diagrams”, here called arc diagrams, in 2n
points, where we follow (GL96, Example 1.4).

These consists of two edges, called top and bottom edge, each of them en-
dowed with n vertices, such that each vertex is joined to just one another vertex
and none of the joins intersect, when drawn in the rectangle defined by the two
edges. Multiplication of diagrams is given by vertical juxtaposition, removing in-
terior circles and multiplying with the factor [2] for each removed interior circle.
The generators Ui and the unit element correspond to the arc diagrams in Figure 1.
We also call a vertex a bottom vertex, if it is on the bottom edge, and a top vertex,
if it is on the top edge. In the same spirit, TLn,d(q) is the space of arc diagrams

Ui =

i n

, I =

n

Figure 1: The generator Ui and the identity.

with n vertices on the top edge and d vertices on the bottom edge, supposed that
d and n are of same pairity. This is then a TLn(q)-TLd(q)-bimodule, where the ac-
tions are defined by concatenation of arc diagrams, removing interior circles and
multiplying with [2] for each removed circle, similar as before. Moreover, stacking
diagrams defines a TLn(q)-TLm(q)-bimodule morphism

TLn,d(q) ⊗ TLd,m(q)→ TLn,m(q).

The representation theory for TLn(q), if q ∈ C× is not a root of unity, is well
understood, as well as that for Hn(q). The main definitions and facts concerning
this are stated in the next section, namely Section 2.2.

Section 2.2 Combinatorics and representations

To understand this section, the reader is assumed to be familiar with the notion of
partitions and tableaux. The set of partitions of n is denoted by Par(n) and Parr(n)
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describes the subset of those with at most r rows. For a partition λ ∈ Par(n),

〈λ〉 = {(i, j) ∈ Z≥0 × Z≥0, 1 ≤ j ≤ λi, 1 ≤ i ≤ h}
denotes the associated Young diagram. Its elements are called nodes. Moreover
the graph B is defined to be the graph with vertex set

⋃
n Par(n) and oriented edges

λ → µ, whenever 〈µ〉 can be obtained from 〈λ〉 by adding a node. Consequently
B2 denotes the subgraph induced by

⋃
n Par2(n), see also Figure 2. The orientation

in Figure 2 is implicitly set from top to bottom. It will turn out later in this section
(see Corollary 2.2.12), that this graph is the branching graph for the Temperley–
Lieb algebras TLn(q), n ∈ N.

Figure 2: The branching graph B2 of the algebras TLn, n ∈ N.

Following standard notation, Tab(λ) denotes the set of tableaux of shape λ ∈
Par(n) and Std(λ) the subset of standard ones, where we mean by standard, strictly
row-increasing and strictly column-increasing. Similarly, the set of all tableaux is
denoted by Tab(n) =

⋃
λ∈Par(n) Tab(λ) and that of all standard ones by Std(n) =⋃

λ∈Par(n) Std(n). In the same spirit, we use the notation Tabr(n) and Stdr(n).
Furthermore, we can identify a tableau t ∈ Tab(λ) with a bijection 〈λ〉 →

{1, . . . , n}. We also write Shape(t) = λ. Moreover, if t is standard, then t can also
be identified with a path ∅ → λ(1) → · · · → λ(n) = λ in B. Respecting this,
t′ denotes the subpath obtained from t by removing λ(n). If λ ∈ Par2(n), then t
corresponds actually to a path in B2, therefore, if this is the case, we denote by t+
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and t− the two possible extensions of t in B2, where t+ is the extension obtained by
adding n + 1 to the first row of t and t− by adding n + 1 to the second line (t− does
not exist if λ2 = λ1).

There is a partial order on Par(n), which extends to Std(n) and which is usually
called the dominance order:

Definition 2.2.1. 1. For µ, λ ∈ Par(n), λ dominates µ, written λ D µ, if

λ1 + · · · + λ j ≥ µ1 + · · · + µ j for all j ≥ 1.

2. Moreover, for t, s ∈ Std(n), t is said to dominate s, again written t D s, if

Shape( t|k) D Shape( s|k) for all k = 1, . . . , n,

where t|k is obtained from t : 〈λ〉 → {1, . . . , n} by restricting to {1, . . . , k}.
Remark 2.2.2. 1. Let tλ ∈ Std(λ) be a tableau, such that tλ D t for all t ∈

Std(λ). tλ is unique and tλ has its numbers 1, . . . , n ordered from left to right,
top to bottom, rows before columns.

2. When dealing with two-row partitions and the corresponding tableaux, one
can easily visualize the dominance order in the branching graph: For two
partitions λ = (λ1, λ2), µ = (µ1, µ2) ∈ Par2(n) it is clear that λ D µ, if
λ1 ≥ µ1. Moreover two paths t, s ∈ Std(n) satisfy t D s if and only if t is
weakly to the right of s. An example is given in Figure 3.

With the dominance order defined, it is now possible to determine the dimen-
sion of Hn(q). To do so, we observe first that

Hn(q)→ Hn(q), Tw 7→ T ∗w = Tw−1 , (2.9)

defines an anti-automorphism of algebras. Moreover, the symmetric group S n acts
on the set of tableaux Tab(λ) of shape λ ∈ Par(n) by permuting entries. Writing
S λ ⊂ S n for the row stabilizer of tλ, we can define for λ ∈ Par(n) and t, s ∈ Std(λ),

xλ :=
∑

w∈S λ

Tw and xλt,s := T ∗d(s)xλTd(t), (2.10)

where d(t) ∈ S n is a reduced element, such that t = d(t)(tλ). Then one can prove
the following theorem, see (Mur95, Theorem 4.17).

Theorem 2.2.3. The set {xλt,s, t, s ∈ Std(λ), λ ∈ Par(n)} is a basis of Hn(q). In
particular dim Hn(q) = n! = #S n.

This basis is also called Murphy’s standard basis. Having obtained the di-
mension of the Hecke algebra, it would also be nice to do so for TLn(q). Let x 7→ x̃
denote the map induced by flipping diagrams vertically in TLn(q).
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ts uv

Figure 3: Two paths s / t and two non-compatible paths w and u.

Definition 2.2.4. For an arc diagram β, a line of β is horizontal, if its endpoints are
both top or bottom vertices, otherwise it is vertical. To a path t of shape λ ∈ Par2(n)
with d = λ1 − λ2, we associate an arc diagram βt,· ∈ TLn,d(q) by the condition:

• k ∈ {1, . . . , n} is in the second row of t if and only if the kth top vertex is the
right endpoint of a horizontal line.

Moreover, for λ ∈ Par2(n) and s, t ∈ Std(λ) we also write βs,t = βs,· · β̃t,· ∈ TLn(q).

Example 2.2.5. Let n = 10 and let t and s be the tableaux ending in (7, 3) given by

t = 1 3 5 7 8 9 10
2 4 6

, s = 1 2 3 5 6 7 10
4 8 9

.

Then we obtain

βt,· = , βs,· = and βt,s = .

Remark 2.2.6. 1. It is clear that (t, s) 7→ βt,s defines a bijection between the
set

⋃
λ∈Par2(n) Std(λ) × Std(λ) and set of arc diagrams in TLn(q), i.e.

{βt,s, t, s ∈ Std(λ), λ ∈ Par2(n)}

13



is a basis of TLn(q).

2. This basis is actually a cellular basis, see (GL96, Example 1.4), which turns
TLn(q) into a cellular algebra. Cellular algebras were first defined by Graham
and Lehrer in (GL96).

Having notation and terminology fixed, we can now describe the simple mod-
ules of Hn(q) and TLn(q). However, to simplify formulas, we shall another generator-
relation presentation for the Hecke algebra. Following (Wen88, Section 2), setting

Ci := Ti + 1 for i = 1, . . . , n − 1. (2.11)

replaces (2.1), (2.2) and (2.3) with

C2
i = (1 + q)Ci, if 1 ≤ i ≤ n − 1, (2.12)

CiCi+1Ci − qCi = Ci+1CiCi+1 − qCi+1, if 1 ≤ i ≤ n − 2, (2.13)

CiC j = C jCi, if |i − j| > 1. (2.14)

Remark 2.2.7. 1. The generators Ci are more related to the generators Ui of
the Temperley–Lieb algebra than the generators Ti are: We obtain φ1(Ci) =

qUi and moreover ker φ1 is generated by

C1C2C1 − qCi = T1T2T1 + T1T2 + T2T1 + T1 + T2 + 1.

2. One could choose to use C′i = q − Ti instead of Ci, but then one should
replace φ1 by φ2 in this and following sections.

To define Hn(q)-modules respectively TLn(q)-modules associated to a partition
λ, we still need some more notation. We follow (Wen88, Section 2):

Definition 2.2.8. For t ∈ Std(n) and 1 ≤ i ≤ n the number d(t, i) is defined to be

d(t, i) = c(t, i) − r(t, i) − (c(t, i + 1) − r(t, i + 1)), (2.15)

where c(t, i) denotes the column number and r(t, i) the row number of i in t.

Then we shall use the notations

aH
d (q) =

1 − qd+1

1 − qd , (2.16)

aTL
d (q) = q−1aH

d (q2) =
[d + 1]

[d]
, (2.17)

supposed that q (respectively q2) is not a dth root of unity. (2.16) and (2.17) are
motivated by the corresponding coefficient under (Wen88, (2.2)). Actually q2 not
being a dth root of unity is equivalent to [d] , 0.

Considering tableaux as bijections from 〈Shape(t)〉 → {1, . . . , n} implies that
si(t) := si ◦ t is the tableau obtained from t by interchanging the numbers i and i+1.

14



If t ∈ Std(n), such that si(t) is not standard any more, then i and i + 1 must be in the
same row or column, hence d(t, i) = ±1, implying√

aH
d(t,i)(q)aH

−d(t,i)(q) = 0 =

√
aTL

d(t,i)(q)aTL
−d(t,i)(q). (2.18)

Following (Wen88, (2.3)), we define the q-analogs of Young’s normal representa-
tion:

Definition 2.2.9. Let λ be a partition of n.

1. Assume that q is not a kth root of unity for k = 2, . . . , n and let S Hn(q)
λ be the

vector space with basis Std(λ). Then we define a Hn(q)-action on S Hn(q)
λ by

Ci.t = aH
d(t,i)(q)t +

√
aH

d(t,i)(q)aH
−d(t,i)(q)si(t). (2.19)

2. If [k]q , 0 for k = 2, . . . , n and if λ has at most two rows, we also define an
action of TLn(q) on S TLn(q)

λ , the same vector space as above, by setting

Ui.t = q−1Ci.t = aTL
d(t,i)(q)t +

√
aTL

d(t,i)(q)aTL
−d(t,i)(q)si(t). (2.20)

(2.18) ensures that (2.19) and (2.20) are well-defined. One can check, that this
defines in both cases a representation, for a proof we refer to (Wen88, Section 2).
Moreover one can check that ker φ1 from (2.7) acts by 0, if λ is a partition with at
most 2 rows, so the representation of Hn(q2) descends to TLn(q) under φ1.

Actually these modules describe the simple ones:

Theorem 2.2.10. 1. Suppose that q is not a kth root of unity for k = 2, . . . , n.
Then S Hn(q)

λ is a simple module and the set of all S Hn(q)
λ , λ ∈ Par(n) forms a

complete list of inequivalent simple Hn(q)-modules.

2. If [k] , 0 for k = 2, . . . , n, then similarly the set of all S TLn(q)
λ , λ ∈ Par2(n)

forms a complete list of inequivalent simple TLn(q)-modules.

Proof. We only sketch a proof here, a complete one can be found for example in
(Wen88, Section 2). The proofs for Hn(q) and TLn(q) are analoguous, thus we
only consider Hn(q). Let Mλ be the Hn(q)-module defined as the vector space with
basis Tab(λ) (not only standard tableaux) and the same action as above. By the
above condition on q not being a kth root of unity for k = 2, . . . , n, the tableau
t ∈ Std(n) satisfies aH

d(t,i)(q) = 0, if and only if d(t, i) = −1. In particular S Hn(q)
λ is

an invariant subspace of Mλ and therefore a submodule. The map t 7→ t′ induces
an isomorphism of vector spaces between S Hn(q)

λ and
⊕

λ′(λ S Hn−1(q)
λ′ , where λ′ ( λ

means, that λ′ is a partition obtainable from λ by removing a box. Analyzing
the action of Hn(q) actually implies, that this induces an isomorphism of Hn−1(q)-
modules. Then one can use induction to show that S λ is simple. Moreover, if µ
and λ are two inequal partitions and n > 2, then at least one of them contains a
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partition λ′ that is not contained in the other one. In particular, S λ and S µ are
non-isomorphic as Hn−1(q)-modules. Moreover, if V is any simple Hn(q)-module,
it decomposes by induction into a sum of some S Hn−1(q)

µ as a Hn−1(q)-module. So
V must contain a simple S Hn(q)

λ , implying that V is already S Hn(q)
λ . �

Since the branching rule S λ �
⊕

λ′(λ S λ′ is the same as for the group algebra
CS n of the symmetric group S n, Hn(q) turns out to be semisimple. A more general
criterion for semisimplicity can be found in (HST15b, Theorem 5.1) for the Hecke
algebra and in (HST15a, Proposition 5.1) for the Temperley–Lieb algebra.

Corollary 2.2.11. If q is not a kth root of unity for k = 2, . . . , n, then Hn(q) is
semisimple. In particular, if [k] , 0 for k = 2, . . . , n, also TLn(q) is semisimple.

Proof. The dimension of Hn(q) is n! by using Theorem 2.2.3. Moreover, the simple
S n-module S S n

λ associated to the partition λ, which is the the dequantization of
S Hn(q)
λ , is of same dimension than S Hn(q)

λ , which implies

dim Hn(q) = n! = dimCS n =
∑

λ∈Par(n)

(
dim S S n

λ

)2
=

∑
λ∈Par(n)

(
dim S Hn(q)

λ

)2
.

Thus Hn(q) is semisimple. TLn(q) is semisimple, as it is a quotient of Hn(q2). �

Because we will work a lot with the branching graph of the Temperley–Lieb
algebras in Figure 2, we stress this fact once again:

Corollary 2.2.12. If [k] , 0 for k = 2, . . . , n, then the graph B2 introduced before
(see Figure 2) is the branching graph of the algebras TL1 ⊂ TL2 ⊂ . . . TLn.

To avoid confusion, the inclusion TLk(q) ⊂ TLn(q) is sometimes denoted by

TLk(q)→ TLn(q), x 7→ x t 1.

In diagrams x t 1 is obtained from x by adding n − k strands to the right of all
diagrams in the expression of x.

Now that TLn(q) and Hn(q) are semisimple with the right choice of the param-
eter q, we can actually describe TLn(q) by a Schur–Weyl duality statement. This
only works in the semisimple case. Section 2.3 is devoted to this perspective.

Section 2.3 A Schur–Weyl duality

If V is a r-dimensional C-vector space, it is in a natural way a left module of the
Lie algebra glr = MrC by left multiplication. Now by using the comultiplication
of its universal envoloping algebra U(glr) defined by x 7→ x ⊗ 1 + 1 ⊗ x for x ∈ glr,
the tensor space V⊗n becomes a left U(glr)-module. However, on the other side the
symmetric group S n acts from the right on the space V⊗n, so does its group algebra
CS n, and moreover this action commutes with the left U(glr)-action. Furthermore,
one can actually show that their images in the endomorphism ring of V⊗n are the
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centralizers of each other. Applying now the powerful double centralizer theorem
allows decomposing V⊗n into a sum of spaces of the form Vλ ⊗ S λ, where Vλ is
a simple U(glr)-module, i.e. a highest weight module, and where S λ is a simple
S n-module. This statement is known as the Schur–Weyl duality in the classical
case.

However, this statement holds in a greater generality. We will consider here
a quantized version, namely we replace CS n by the Hecke algebra Hn(q2), the
universal enveloping algebra U(glr) of the Lie algebra glr by the quantum group
Uq(glr) and the C-vector space V by a certain Uq(glr)-module. Since the images
of Uq(glr) and Uq(slr) in that endomorphism ring will coincide, we will work with
slr instead of glr here. Later as a consequence in the case r = 2, the Temperley–
Lieb algebra will be described as the image of the Hecke algebra Hn(q2) in the
endomorphism ring.

Summarizing, this section is mainly about to the following statement:

Theorem. Assume that q2 is not a kth root of unity for k = 2, . . . , n. Let V be the
fundamental Uq(slr)-module. Then we obtain a decomposition as Uq(slr)-Hn(q2)-
bimodules

V⊗n �
⊕

λ∈Parr(n)

S λ ⊗ Vλ,

where the S Hn(q2)
λ are simple Hn(q2)-modules, the Vλ are simple Uq(slr)-modules

and the sum ranges over all partitions λ of n with at most r rows.

The first necessity to understand and prove the above statement is to introduce
the used language. We start by recalling the definition of the centralizer.

Definition 2.3.1. For a K-vector space M and S ⊂ EndK(M), the centralizer of S
in EndK(M) is defined to be

CM
K (S ) := {φ ∈ EndK(M), φ ◦ s = s ◦ φ, ∀s ∈ S }.

Remark 2.3.2. If A is a semisimple C-algebra and ρ : A → End(V) a morphism
of C-algebras for a complex finite dimensional vector space V , then 〈A〉 := ρ(A)
is again a semisimple algebra, since the property being semisimple is closed under
taking submodules and quotients by semisimples.

The following version of the double centralizer theorem is not shown here, we
instead refer to (Kna07, Theorem 2.43) for a version concerning simple algebras
and to (KP96, Section 3.2) for a version concerning semisimple algebras:

Theorem 2.3.3 (Double Centralizer Theorem). Let K be an algebraically closed
field, W be a finite dimensional K-vector space and A ⊂ EndK(W) semisimple.

1. Then A′ = CW
K (A), the centralizer of A in EndK(W), is a semisimple subal-

gebra of EndK(W) and CW
K (CW

K (A)) = CW
K (A′) = A.
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2. W decomposes as an A⊗K A′-module into simple A⊗K A′-modules Wi of the
form Vi ⊗K V ′i , where

(a) Vi is a simple A-module and V ′i a simple A′-module and
(b) the Vi form a complete set of inequivalent simple A-modules, so do the

V ′i respectively. In particular, the sets of isomorphism classes of simple
A-modules and simple A′-module are in bijective correspondence.

Hn(q2) will play the role of A′. The role of A would normally be played by
another object, namely the quantum group Uq(glr), however four our purposes it is
sufficient to consider the quantum group Uq(slr), since the images of their actions
on the later defined tensor space V⊗n coincide. We briefly recall some facts:

1. The quantum group Uq(slr) is the C-algebra in the generators Ei, Fi,Ki,K−1
i

for 1 ≤ i ≤ r − 1 subject to the usual relations, see for example (HPK91,
Section 0) for the general definition of the quantum group Uq(g) associated
to a complex semisimple Lie algebra g.

2. Uq(slr) admits a coalgebra structure with comultiplication ∆

∆(Ei) = 1 ⊗ Ei + Ei ⊗ Ki, ∆(Fi) = K−1
i ⊗ Fi + Fi ⊗ 1, (2.21)

∆(Ki) = Ki ⊗ Ki, (2.22)

3. The set of weights is given by

P = {(λ1, . . . , λr−1), λi = ±qmi ,mi ∈ Z}.
For σ ∈ {±1}r−1 we define the subset Pσ of weights of type σ by

Pσ = {(λ1, . . . , λr−1), λi = σiqmi , mi ∈ Z}.
We restrict to weights of type 1 = (1, . . . , 1) from now on. A weight λ =

(qm1 , . . . , qmr−1) is called a dominant weight, if mi ≥ 0 for i = 1, . . . , r−1 and
the set of dominant weights is denoted by P′.

The next theorem can be found for example in (Ros88, Theorem 2):

Theorem 2.3.4. 1. If q is not a root of unity, any finite dimensional Uq(slr)-
module is semisimple.

2. The equivalence classes of simple finite dimensional Uq(slr)-modules is in-
dexed by the set of dominant weights.

Let λ = (qm1 , . . . , qmr−1) be a dominant weight. If q is not a kth root of unity
for k = 2, . . . ,maxi=1,...,r−1(mi), then we can associate to λ a partition µ of length at
most r by imposing the condition

µi − µi+1 = mi for i = 1, . . . , r − 1.

The partition µ is not unique, but if we restrict to µ ∈ Par(n) for a chosen n, then µ
is unique, if it exists.
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Example 2.3.5. Let V be a n-dimensional vector space with a chosen basis v1, . . . ,
vr. Then we define a Uq(slr)-action on V by imposing

Eivi+1 = vi, Eiv j = 0, if j , i + 1,

Fivi = vi+1, Fiv j = 0, if j , i,

Kivi = qvi, Kiv j = v j, if j , i, i + 1,

Kivi+1 = q−1vi+1.

Then V corresponds to the simple Uq(slr)-module associated to the partition µ =

(1, 0, . . . , 0). This module is called the fundamental module of Uq(slr).

The comultiplication defined in (2.21) and (2.22) induces a Uq(slr)-module
structure on V⊗n, which is finite dimensional, thus decomposable into

V⊗n =
⊕
λ∈P′

mλVq
λ (2.23)

as a Uq(slr)-module. Now an action of Hn(q2) on V⊗n is defined as follows:

Definition 2.3.6. Let T ∈ End(V ⊗ V) be the linear map defined by

vi ⊗ v j 7→


(q2 − 1)vi ⊗ v j − qv j ⊗ vi, i < j,
−vi ⊗ v j, i = j,
−qv j ⊗ vi, i > j.

(2.24)

Then V⊗n admits a right Hn(q2)-action defined by

(vi1 ⊗ · · · ⊗ vin).Ti = (id⊗i−1 ⊗T ⊗ id⊗n−i−1)(vi1 ⊗ · · · ⊗ vir ), (2.25)

where T acts on the ith and i + 1th tensor factors.

To see that this action is well-defined, one has to check whether the relations
(2.2) and (2.1) hold ((2.3) clearly does). This can be done by direct computation.

Remark 2.3.7. This action may not seem to be the usual one: In (Jim86, Section
4) an action is defined in terms of R-matrices using the generators T ′i = q−1Ti and
respective relations for the Hecke algebra. Then for example in (Du95, Section
1.2), this action is rewritten for the generators Ti and relations (2.1)-(2.3) in a more
convenient form, by defining the linear map T by

vi ⊗ v j 7→


qv j ⊗ vi, i < j,
q2vi ⊗ v j, i = j,
(q2 − 1)vi ⊗ v j + qv j ⊗ vi, i > j.

(2.26)

(2.26) and (2.24) are connected by the automorphism β on Hn(q2) defined by Ti 7→
−Ti + q2 − 1, but this also intertwines the surjections φ1 and φ2 in Theorem 2.1.4,
see Remark 2.1.5. Therefore choosing φ1 instead of φ2 amounts to chose (2.24)
over (2.26).
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For an algebra morphism ρ : A→ EndC(V), 〈A〉 denoted its image in the endo-
morphism ring of V . The following can be found in (Jim86, Proposition 3):

Proposition 2.3.8. V⊗n with the right action defined in (2.24) is a Uq(slr)-Hn(q2)-
bimodule. If Hn(q2) is semisimple, i.e. if q2 is not a kth root of unity for k = 1, . . . , n,
then

〈Hn(q2)〉 = EndUq(slr)(V⊗n) and 〈Uq(slr)〉 = EndHn(q2)(V
⊗n).

Now Theorem 2.3.3 decomposes V⊗n into simple Uq(slr)-Hn(q2)-bimodules:

Proposition 2.3.9. If q2 is not a kth root of unity for k = 2, . . . , n, then V⊗n decom-
poses into

V⊗n =
⊕

λ∈Parr(n)

Vq
λ ⊗ S Hn(q2)

λ

as Uq(slr)-Hn(q2)-bimodules, where the S λ are simple Hn(q2)-modules and the Vq
λ

are simple Uq(slr)-modules.

Proof. The decomposition over λ ∈ Par(n) follows from Theorem 2.3.3 and Propo-
sition 2.3.8. To see the fact, that the sum ranges only over λ ∈ Parr(n), we argue as
in (Hä99, Section 3):

1. Let λ be a composition of n of length at most r, i.e. a tuple λ = (λ1, . . . , λh) ∈
Nh, h ≤ r, such that

∑
i λi = n, and moreover let a be a row-standard tableau

of shape λ, i.e. a tableau, such that its numbers along rows increase. Then
we define an element va ∈ V⊗n by setting

va = vc(a,1) ⊗ · · · ⊗ vc(a,n),

where c(a, i) denotes the column number of i in a. The elements va for all
such row-standard tableaux a are pairwise distinct and form a basis of V⊗n.

2. If λ is a composition of n of length at most r and if Mλ denotes the subspace
spanned by elements va, such that a is a row-standard tableau of shape λ, then
Mλ is a Hn(q2)-submodule of V⊗n. This can be seen by direct computation.
This means in particular that V⊗n =

⊕
λ Mλ, where the sum ranges over all

compositions λ of n of length at most r.

3. If λ is a composition of n of length at most r, then ordering the rows λi lets
us obtain a partition µ ∈ Parr(n) and moreover it is clear that Mλ � Mµ as
right Hn(q2)-modules, since the action of Hn(q2) on va is determined by the
column numbers, which coincide for µ and λ. In particular, we obtain

V⊗n �
⊕

λ∈Parr(n)

nλMλ, (2.27)

where nλ is the multiplicity of Mλ in V⊗n.
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4. For λ ∈ Parr(n) let Mλ = xλHn(q2), which equals the module Mλ defined
under (Mur95, Theorem 5.1) or under (DJ86, Lemma 3.2). If a, b are a row-
standard tableaux of shape λ, then one can also define an element xab as in
(2.10), such that the module Mλ is isomorphic to the module Mλ by sending
va to xtλa. This can be seen by comparing the action of Hn(q2) on xtλa in
(Mur95, (4.2)) or in (DJ86, Lemma 3.2) and the action defined in (2.26).
Therefore, we obtain V⊗n �

⊕
λ∈Parr(n) nλMλ.

5. By (Mur95, Theorem 6.3) and (Mur95, Theorem 7.2) or by (DJ86, Corollary
4.12), Mλ decomposes into simples Dµ = S Hn(q2)

µ with µ D λ. If λ has at most
r rows, then µ has at most r rows too. In particular,

V⊗n �
⊕

λ∈Parr(n)

n′λS Hn(q2)
λ ,

where n′λ is the multiplicity of S Hn(q2)
λ in V⊗n. �

One can check in the case r = 2, that ker φ1 of the map defined in (2.7) acts by
zero on V⊗n. This leads to Proposition 2.3.10, where we refer to (LZ10, Theorem
3.5) for a proof. Actually (LZ10, Theorem 3.5) describes the situation for the
generic parameter v and moreover the generator-relation presentation of Hn(q) is
slightly different. However, one can also see Proposition 2.3.10 by using (Hä99,
Theorem 6), which is easier to understand and also uses our generator-relation
presentation of Hn(q).

Proposition 2.3.10. If q2 is not a kth root of unity for k = 2, . . . , n and if V is the
fundamental Uq(sl2)-module, then EndUq(sl2)(V⊗n) is isomorphic to the Temperley–
Lieb algebra TLn(q).

In particular, by use of Proposition 2.3.9 and Proposition 2.3.10 we obtain a
Schur–Weyl duality statement:

Corollary 2.3.11. If q2 is not a kth root of unity for k = 2, . . . , n, then as Uq(sl2)-
TLn(q)-bimodules, we have the decomposition

V⊗n =
⊕

λ∈Par2(n)

Vq
λ ⊗ S TLn(q)

λ .

Now that we have identified the Temperley–Lieb algebra as an endomorphism
ring, one could ask how the highest weight projections look like if expressed by
diagramatic language. This gives rise to the theory of the (higher order) Jones–
Wenzl projectors, which we will deal with in Section 3. However, since diagrams
do not depend on q, we can actually also treat the non-semisimple case; this will
be done in Section 3.2.
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Section 3

Idempotents in the Temperley–Lieb algebra

In this section we summarize the theory of the (higher order) Jones–Wenzl projec-
tors, most of which can be found in (GW93). Apart from this source, we also took
some inspiration of (CH15). Although these projectors correspond under Schur–
Weyl duality to the highest weight projectors of quantum sl2, we define them in
Section 3.1.1 by a diagramatic recursion following (CH15). The advantage of this
aproach is that we can specialize “evaluable” equalities at a root of unity, where
Schur–Weyl duality does not hold. Following this idea, we define a complete set of
orthogonal idempotents by diagramatic relations, so-called path idempotents. Our
definition in Section 3.1.2 is basically (CH15, Definition 2.17). If S λ is the simple
TLn-module corresponding to a partition λ, then it has a basis indexed by tableaux
t of shape λ. The path idempotent pt is defined in (GW93, Section 0.3) to be the
orthogonal projection onto the one dimensional subspace spanned by the basis ele-
ment t in S λ. With these two descriptions of the pt in mind, we obtain by using the
diagramatic description of the path idempotents a purely diagramatic definition of
the higher order Jones–Wenzl projectors in Section 3.1.3, which then correspond
to the projections onto the isotopic components of the simple modules S λ.

But the definitions of the (higher order) Jones–Wenzl projectors and of the path
idempotents involve coefficents, which are not necessarily well-defined, if special-
ized at a root of unity. Therefore we need to keep track of the coefficents and
moreover we need to unterstand the relations between the path idempotents to get
a better understanding of the situation. Section 3.2 is devoted to this perspective,
following (GW93, Section 2). Section 3.2.1 consists of a couple of technical state-
ments, needed to construct in Section 3.2.2 a sufficient number of well-defined
idempotents. Not all of them are path idempotents and they do not give rise to
well-defined higher order Jones–Wenzl projectors as in the generic case, but nev-
ertheless, we can identify with their aid the minimal central idempotents modulo
the radical of the Temperley–Lieb at a root of unity.

There is a broad literature about these idempotents, the results of this section
are well-known and can be found in (GW93) and (CH15), however some of the
proofs in Section 3.2.1 appear to be new.

Section 3.1 The generic case

In Section 2, q ∈ C× was a complex number, however, in this section it is helpful
to step back for a moment and to work over the field C(v), where v is a generic
parameter. Moreover, we point out that the theory for q ∈ C× being not a root
of unity works in parallel to the generic case. To make formulas more clean it is
convenient to write TLn for TLn(v) and TLn,k for TLn,k(v).
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Section 3.1.1 The Jones–Wenzl projectors

Proposition 2.3.10 states that TLn is isomorphic to EndUv(sl2)(V⊗n), where V is the
fundamental Uv(sl2)-module from Example 2.3.5. By using Corollary 2.3.11 TLn

decomposes into

TLn � EndUv(sl2)
(
V⊗n

)
� EndUv(sl2)

 ⊕
λ∈Par2(n)

Vv
λ ⊗ S λ

 � ⊕
λ∈Par2(n)

EndUv(sl2)
(
Vv
λ ⊗ S λ

)
�

⊕
λ∈Par2(n)

EndC(v)(S λ), (3.1)

where S λ := S TLn(v)
λ is the simple TLn(v)-module introduced in Definition 2.2.9.

Let zλ ∈ TLn correspond to the identity in End(S λ) under the above isomorphism:
This is a minimal central idempotent. Therefore with (3.1), TLn decomposes into

TLn =
⊕

λ∈Par2(n)

zλTLn =
⊕

λ∈Par2(n)

zλTLnzλ.

It is clear that multiplying with zλ in TLn now corresponds to projecting onto the
S λ-isotypical component of TLn.

The Jones–Wenzl projectors are now constructed diagramatically to be these
projections onto the isotypical components. Remember, that the inclusion TLn ↪→
TLn+1 was denoted by x 7→ x t 1. First defined in (Wen87) we define as in (CH15,
(2.4)) the Jones–Wenzl projectors:

Definition 3.1.1. The nth Jones–Wenzl projector pn ∈ TLn is defined by the fol-
lowing recursive rule:

pn = 1, if n = 1,

pn = pn−1 t 1 − [n − 1]
[n]

(pn−1 t 1)hn−1(pn−1 t 1), if n ≥ 2. (3.2)

Although pn is not an arc diagram but a linear combination of these, it is con-
venient to illustrate pn by a box with n incoming and outcoming strands: pn =

n . Then (3.2) can be rewritten in terms of diagrams:

n = n − 1 − [n − 1]
[n]

n − 1

n − 1

. (3.2)

The following characterization will identify pn with zλ for λ = (n). An equiva-
lent version (see Remark 3.1.3) can be found in (KL94, Section 3.1).

Proposition 3.1.2. The Jones–Wenzl projectors pn are uniquely characterized by:
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1. pn − 1 is an element of the subalgebra of TLn generated by U1, . . . ,Un−1 as
an associative algebra.

2. pnUi = 0 = Ui pn for all i = 1, . . . , n − 1.

Remark 3.1.3. 1. TLn is the unital, associative C(q)-algebra generated by the
elements U1, . . . ,Un−1. In particular, the subalgebra of TLn generated by
U1, . . . ,Un−1 as an associative algebra does not contain the unit element 1 ∈
TLn, though it can have another element as the unit element.

2. In presence of the second property, the first one is equivalent to pn being
idempotent and non-zero:

• Assume that pn is idempotent and non-zero and satisfies the second
property. If pn decomposes as pn = γ0 +

∑
i γibi, where the bi are non-

empty words in the generators U1, . . . ,Un−1 (in particular they are not
equal to the unit element) and the γi some coefficents, then idempo-
tency and the second property implies

pn = p2
n = pnγ0 +

∑
i

γi pnbi = pnγ0.

Since pn is non-zero, γ0 must be one and hence pn − 1 is a linear com-
bination of non-empty words in the generators U1, . . .Un−1.

• If the Jones–Wenzl projectors pn satisfy the two properties, then they
are idempotent, since p2

n = pn(pn − 1) + pn = 0 + pn.

Proof of Proposition 3.1.2. The statement is clear for p1 = 1, so let n > 1.

1. By definition pn−1 is an element of TLn−1, in particular, it is expressable by

pn−1 = γ0 +

k∑
i=1

γibi

where the γi ∈ C(v) are some coefficents and the bi are non-empty words in
the generators U1, . . . ,Un−2. Since the inclusion from TLn−1 ↪→ TLn, given
by x 7→ x t 1, maps Ui → Ui for i = 1, . . . , n − 2, also

Bn := (pn−1 t 1)Un−1(pn−1 t 1) = γ0Un−1 +

k∑
i+ j=1
i, j≥0

γiγ j(bi t 1)Un−1(b j t 1)

is a linear combination of non-empty words in the generators U1, . . . ,Un−1.
In particular, Bn is an element of the subalgebra of TLn generated by the
elements U1, . . . ,Un−1 as an associative algebra. So is pn−1 − 1 by induction
hypothesis. Moreover, by using (3.2) also

pn − 1 = (pn−1 t 1) − 1 − [n − 1]
[n]

(pn−1 t 1)Un−1(pn−1 t 1)

= (pn−1 − 1) t 1 − [n − 1]
[n]

Bn
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is an element of that subalgebra, i.e. pn satisfies the first property.

2. Assume by induction that the second property is true for all Ui, pl with i ≤ l
and l < n. If i < n − 1, then (3.2) yields that

pnUi = (pn−1 t 1)Ui − [n − 1]
[n]

(pn−1 t 1)Un−1(pn−1 t 1)Ui

= (pn−1 t 1)(Ui t 1) − [n − 1]
[n]

(pn−1 t 1)Un−1(pn−1 t 1)(Ui t 1)

= (pn−1Ui t 1) − [n − 1]
[n]

(pn−1 t 1)Un−1(pn−1Ui t 1) = 0,

since Ui = Ui t 1 under TLn−1 ↪→ TLn. Similarly Ui pn is 0. What is left to
show is the equation pnUn−1 = 0 = Un−1 pn and by symmetry, it suffices to
show that Un−1 pn = 0.

The first property applied to p j and the second to pi imply together

pi · p j t 1 = pi(p j t 1 − 1) + pi = pi ∀ i < n, j ≤ i. (3.3)

Moreover, applying (3.2) and using [2] − [n−2]
[n−1] =

[n]
[n−1] yields

n − 1 =
[n]

[n − 1]
n − 2 , (3.4)

hence combined with (3.3), the equation

Un−1 pn =
n

=
n − 1

− [n − 1]
[n]

n − 1

n − 1

=
n − 1

−
n − 1

n − 2
= 0

holds. In particular, pn also satisfies the second property.

The first and the second poperty imply, that 1−pn is a unit element in the subalgebra
generated by U1, . . . ,Un−1 as an associative algebra, in particular, 1− pn is unique.
But then also pn is unique. �

With these characterization it is easy to identify pn as the element zλ where
λ = (n) is the maximal partition of n.

Corollary 3.1.4. pn equals the minimal central idempotent z(n).

Proof. It is sufficient to show that the element z(n) satisfies the two properties of
Proposition 3.1.2. By Remark 3.1.3 it is actually enough to consider the second
property, since z(n) is non-zero and idempotent. Now S (n) is the one dimensional
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TLn-module spanned by the tableau t(n), which implies that d = d(t(n), i) = −1
for all i, hence ad = 0, where ad is defined in (2.17) and d(t(n), i) in (2.15). In
particular, (2.20) implies that all generators Ui act by 0 on S (n). Since multiplying
with z(n) corresponds to projecting onto the S (n)-isotypical component and since
z(n) is central, this already implies the second property. �

Following (CH15, Section 2.14), the next step will be to express path idem-
potents in diagramatic language. They are the main ingredient to define analogs
of the Jones–Wenzl projectors corresponding to λ , (n), which will be done in
Section 3.1.3, and moreover they are also the main subject of Section 3.2.1.

Section 3.1.2 Path idempotents

Now that the projection onto S (n) is expressed in terms of diagrams, a natural idea
would be to express the other projections onto the S λ-isotypical parts in diagrams
as well. However, the case for λ = (n) is “easier” as for general partitions λ ∈
Par2(n), already the basis of S (n) consists only of one element, namely the only
standard tableau of (n). Therefore to define higher order Jones–Wenzl projectors,
which will be postponed to Section 3.1.3, it would be a good idea to define first
an analog of the orthogonal projection S λ → Ct in terms of diagrams, where t ∈
Std(λ) is a basis element of S λ. This is exactly the outline of this section. Following
(CH15, Definition 2.17), a definition of elements pt is given in the beginning of this
section, then a couple of properties are proven, to show in the end of this section,
that pt actually corresponds to the orthogonal projection S λ → Ct.

A standard tableau t in Std(λ) will always be identified with its path in the
branching graph B2. The path t has always an extension t+ of shape (λ1 + 1, λ2)
and if λ1 > λ2, it also has the extension t− of shape (λ1, λ2 + 1). Moreover t′ was
the subpath of t of length n − 1.

First the coefficients of the later defined path idempotents are defined:

Definition 3.1.5. Let t ∈ Std(n) be a standard tableau. The coefficent ft ∈ C(v) is
defined by the following recursive rule:

• If n = 1, then the coefficient ft for the unique t in Std(1) is defined to be 1.

• If n ≥ 2, ft is said to be

ft =

 ft′ , if t = t′+,
[k]

[k+1] ft′ , if t = t′−,

where k = λ1 − λ2 and λ = Shape(t′).

Remark 3.1.6.

1. TLn was only defined for n ≥ 1. Though it seems a bit strange, for the
sake of the next definition, it is convenient to formally set TL0 := C(v) and
to identify TL0 with the unital algebra generated by the “empty” diagram.
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In this setting the 0th Jones–Wenzl projector p0 is defined to be the empty
diagram with coefficent 1.

2. Similar as pn was illustrated by n and because the diagramatic ar-
guments will get more complicated in the future sections, also an element
x ∈ TLn,k, will be illustrated by a grey box x = x with n incoming and
k outcoming strands.

The map TLn,k → TLk,n induced by flipping diagrams vertically was denoted
by x 7→ x̃. With this notation and the above remark in mind, it is possible to define
elements pt ∈ TLn indexed by paths t ∈ Std(λ):

Definition 3.1.7. Let t ∈ Std(n) be a path. The element pt ∈ TLn is defined by the
following rule:

• For n = 1 and t ∈ Std(1), pt is defined to be 1 ∈ TL1.

• If n ≥ 2, assume that Shape(t′) = λ with k = λ1 − λ2 and that pt′ is defined

for t′ and satisfies pt′ = ft′ · xpk x̃ = ft′ ·
x

k

x̃

, where x ∈ TLn−1,k and ft is

defined in Definition 3.1.5. Then we define pt by

pt = ft ·
x

k + 1

x̃

, if t = t′+, and pt = ft ·

x

k

k − 1

k

x̃

, if t = t′−.

(3.5)

Remark 3.1.8. 1. These elements pt will turn out to be the wanted path idem-
potents. However, it is not known yet that they are idempotent, likewise till
idempotency is proven, the name path idempotent shall not be used.

2. Substituting (3.2) into (3.5) yields the reccurence

pt t 1 = pt+ + pt− . (3.6)

3. If a simple transposition si is not admissible for a path r, i.e. if the tableau
si(r) is not standard, it is not hard to check that

Ui pr = 0 = prUi, (3.7)

which is left as an exercise to the reader.

Example 3.1.9. 1. Let λ = (n) and t be its unique standard tableau. Then pt

equals to n = pn.
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2. Let λ = (n − 1, 1) and let t be the standard tableau with entry i ∈ {1, . . . , n}
in the second row. The corresponding path and its path idempotent are illus-
trated in Figure 4.

i
pt =

[i−1]
[i]

i − 1

n − 2

i − 1

i

.

Figure 4: A path t of shape (n − 1, 1) and the element pt.

Idempotency of the element pt can directly be shown by using its definition:

Lemma 3.1.10. The element pt is idempotent, i.e. p2
t = pt.

Proof. Let by Definition 3.1.7 the element pt be given by ft · xpk x̃ ∈ TLn. We first
show the following equation by using induction over n:

pk x̃xpk =
1
ft

pk (3.8)

Proof of the equation (3.8). For t ∈ Std(1) (3.8) is clearly true. Now assume for
pt′ = ft′ · ypkỹ ∈ TLn−1 that (3.8) holds, i.e. assume that

pkỹypk =
1
ft′

pk. (3.9)

There are the following two cases:

1. If t = t′+, then f f = ft′ and by Definition 3.1.7 pt is of the form

pt = ft · (y t 1)pk+1(ỹ t 1) = ft′(y t 1)pk+1(ỹ t 1).

This implies with pk+1 = pk+1(pk t 1) (see (3.3)) and with (3.9), that

pk+1(y t 1)(ỹ t 1)pk+1 = pk+1(pk t 1)(y t 1)(ỹ t 1)(pk t 1)pk+1

= pk+1((pkyỹpk) t 1))pk+1

=
1
ft′

pk+1(pk t 1)pk+1 =
1
ft

pk+1,

thus (3.8) holds for pt in this case.
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2. Now assume that t = t′− and let λ = Shape(t′) with k = λ1 − λ2. By
Definition 3.1.7 pt is of the form

pt = ft ·

y

k

k − 1

k
ỹ

.

So, (3.9) , (3.4) and idempotency of pk+1 together imply that

k − 1

k − 1

k

k

ỹ

ỹ
=

1
ft′

k − 1

k − 1

k =
1
ft′

[k + 1]
[k]

k − 1

k − 1

k − 1 =
1
ft

pk−1.

But this is just (3.8) for pt. �

Since pk is idempotent, (3.8) implies that

pt pt = f 2
t xpk x̃xpk x̃ = ft xpk x̃ = pt �

Now that the element pt is idempotent, we will call it the path idempotent
associated to t.

Remark 3.1.11. We saw in the proof of Lemma 3.1.10, that pk x̃xpk = 1
ft

pk for a
path idempotent pt = ft · xpk x̃. In particular, this implies, that the coefficent of 1 in
x̃x is exactly 1/ ft.

The following termininology, following (CH15, Definition 2.6), may seem ar-
tificial, but actually just formalizes an easy idea.

∑
TLn,kTLkTLk,d ⊂ TLn,d is meant

to be the submodule in TLn,d generated by the set TLn,kTLkTLn,d ⊂ TLn,d.

Definition 3.1.12. We say an element a ∈ TLn has through-degree k, if a ∈∑
TLn,kTLkTLk,n ⊂ TLn for k ≤ n minimal. Similar, we say that a ∈ TLn,l has

through-degree k, if a ∈ ∑
TLn,kTLkTLk,l ⊂ TLn,l. for k ≤ n minimal.

Example 3.1.13. An arc diagram a ∈ TLn has through-degree k if and only if it
has exactly k vertical lines, where a line is vertical if and only if its endpoints are
not on the same edge. If a =

∑
b γbb is a linear combination of arc diagrams b with

γb ∈ C(v), then a has through-degree k if and only if k is the maximal through-
degree of the summands b of a. In particular,

• the generator Ui ∈ TLn has through-degree n − 2,

• pn has through-degree n, since its coefficent of 1 is 1,
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• x in pt = ft · xpk x̃ can assumed to have through-degree k, since pk annihilates
Ui (see Proposition 3.1.2) and

• the path idempotent pt has also through-degree k, since pk ∈ TLk has through-
degree k.

The next step is to show orthogonality of the path idemptotents pt, t ∈ Std(n).
However, it is easier to treat first the following special case:

Lemma 3.1.14. Let s, t ∈ Std(n) be two paths of different shape. Then pt ps = 0.

Proof. By Definition 3.1.7, pt ps is of the form

pt ps = ft fs · xpk x̃ypdỹ (3.10)

and without loss of generality, k is smaller than d. The element x is expressable as
x =

∑
i xix′i , where xi ∈ TLn,d and x′i ∈ TLd,k and moreover each x′i pk x̃y decomposes

as

x′i pk x̃y =
∑

i

γibi, where γi ∈ C(v) and bi ∈ TLd.

Since pk ∈ TLk and x′i ∈ TLd,k, it is clear that every summand bi is of through-
degree at most k. But k < d implies then that, every bi is a linear combination of
non-empty words in the generators U1, . . . ,Ud−1, i.e. the coefficent of 1 ∈ TLd in
bi is 0. By the second property in Proposition 3.1.2, this implies that bi pl = 0, and
hence x′i pk x̃ypl = 0. Substituting this into (3.10) results in

pt ps = ft fs ·
∑

i

xix′i pk x̃ypl

 ỹ = 0. �

Orthogonality of ps and pt for Shape(t) , Shape(s) and idemptotency have the
following important consequence:

Lemma 3.1.15. Let T be an extension of t ∈ Std(n). Then pt pT = pT .

Proof. Let T ∈ Std(n + k) for k ≥ 1. We proceed by induction over k.

1. If k = 1, then let pτ correspond to the other extension τ of t (if τ does not
exist, set pτ = 0). Then the equation pτpT = 0 holds by Lemma 3.1.14, since
τ and T are of different shape (if τ does not exist, pτpT = 0 holds anyway).
In particular, it follows by using (3.6) and Lemma 3.1.10, that

pt pT = (pτ + pT )pT = p2
T = pT .

2. If k ≥ 2, then induction hypothesis and the above case together yield

ptPT = (pt pT ′)PT = pT ′ pT = pT . �
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Now general orthogonality follows easily as a consequence of the previous two
statements:

Corollary 3.1.16. The elements pt, t ∈ Std(n) are pairwise orthogonal.

Proof. Let t, s ∈ Std(n) be two different paths. If they are of different shape, then
pt ps = 0 holds by Lemma 3.1.14. On the other hand, if they are of same shape,
there exist subpaths τ of t and σ of s of different shape, since t and s are different.
Therefore, using Lemma 3.1.15 and Lemma 3.1.14 gives

pt ps = pt pτpσps = pt · 0 · ps = 0. �

Now that orthogonality is known, completeness of the path idempotents is still
missing. The following proposition summarizes the situation, see also (CH15,
Proposition 2.19) and (CH15, Theorem 2.20):

Proposition 3.1.17. The elements pt, t ∈ Std(n) are pairwise orthogonal idem-
potents and sum up to the identity 1n ∈ TLn, i.e. they form a complete set of
orthogonal idempotents.

Proof. The only thing to show is that 1 =
∑

s ps. since by Lemma 3.1.10 pt is
idempotent and by Corollary 3.1.16 the elements pt, t ∈ Std(n) are pairwise or-
thogonal. To do so we proceed by induction over n. The case n = 1 is clear,
since there is only one path s ∈ Std(1), which equals p1 = 1. If n ≥ 2, induction
hypothesis gives the decomposition

TLn−1 3 1n−1 =
∑

r∈Std(n−1)

pr.

If r(t, n) denotes the row index of n in t, then (3.6) implies

TLn 3 1n = 1n−1 t 1 =
∑

r∈Std(n−1)

pr t 1 =
∑

r∈Std(n−1)

(pr+ + pr−) =
∑

t∈Std(n)
r(t,n)=1

pt +
∑

t∈Std(n)
r(t,n)=2

pt.

But since since r(t, n) is either 1 or 2 for all t ∈ Std(n), this already means that

1n =
∑

t∈Std(n)

pt. �

Now that the elements pt form a complete set of orthogonal idempotents, there
are a few technical lemmas left to prove in this section. We start with the following
property, which is shown by only using the definition of the path idempotents:

Lemma 3.1.18. Let s, t ∈ Std(λ) with λ ∈ Par2(n), such that si(s) = t for some i.
Then the following equation holds:

Ui(pt + ps) = (pt + ps)Ui, . (3.11)
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s t

Figure 5: A path t and s = sn−1(t).

Proof. Assume that i = n − 1 and let r = t′′ = s′′ be the maximal common subpath
of t and s of shape µ = λ(n−2). The situation is illustrated in Figure 5. With
d = µ1 − µ2 = λ1 − λ2, Definition 3.1.7 states that pr, pt and ps are given by

pr = fr

x

d

x̃

, pt = fr
[d + 1]
[d + 2]

x

d + 1

d

d + 1

x̃

and ps = fr
[d]

[d + 1]

x

d

d

d

x̃

.

Applying the recursive formula (3.2) for pd+1 yields

pt = fr
[d+1]
[d+2]



x

d

d

d

x̃

− [d]
[d+1]

x
d

d

d
x̃

− [d]
[d+1]

x
d

d

d
x̃

+
[d]2

[d+1]2

x
d

d

d
x̃


. (3.12)

Now adding ps to (3.12) and simplifying imply that 1
fr

(pt + ps) equals to

(
[d]2

[d+1][d+2]
+

[d]
[d+1

)
x
d

d

d
x̃

+
[d+1]
[d+2]

x

d

x̃

− [d]
[d+2]



x

d

d
x̃

+

x
d

d

x̃


.
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Therefore mutliplying 1
fr

(pt + ps) from the left with Un−1 = gives

1
fr

Un−1(ps + pt) =

(
[d]2

[d+1][d+2]
+

[d]
[d+1

)
x
d

d

d
x̃

+
[d+1][2]

[d+2]

x

d

x̃

− [d] · [2]
[d+2]

x

d

d
x̃

− [d]
[d+2]

x
d

d

x̃

=

x

d

x̃

. (3.13)

It is clear that (3.13) must be vertically symmetric, so also 1
fr

(ps + pt)Un−1 is of
this form. Now this argument generalizes to 1 ≤ i < n − 1, since Definition 3.1.7
only uses the dashed Jones–Wenzl projector d . sitting in the middle. �

Orthogonality and (3.7) have the following consequence:

Corollary 3.1.19. Let t, s ∈ Std(n) be two different paths. Assume that si is admis-
sible for s and that t , si(s). Then ptUi ps = 0 holds.

If si is not admissible for s, then the statement is also true by (3.7).

Proof. Let w = si(s). Then Lemma 3.1.18 and Corollary 3.1.16 imply together
that

ptUi ps = ptUi(ps + pw)ps = pt(ps + pw)Ui ps = 0. �

A path t ∈ Std(λ) can also be identified with a sequence of signs ε1(t), . . . , εn(t)
in {±1}, where εi(t) = 1, if i is in the first row and εi(t) = −1, if i is in the second
row of t. Alternatively εi(t) encodes the ith step of t seen as a path in the branching
graph (Figure 2), where −1 corresponds to a step to the left and +1 to one to the
right.

To show that the path idempotents correspond to the projections S λ → Ct and
also for Section 3.2.1, another technical result is needed, which can also be found
in (GW93, Section 0). For readability we will write pt′ instead of pt′ t 1.

Lemma 3.1.20. Let t ∈ Std(µ) and µ ∈ Par2(n − 1), such that t− exists and let
k = µ1 − µ2.
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1. If εn−1(t) = 1, then the following equations hold:

pt− =
[k]

[k + 1]
ptUn−1 pt and pt+ = pt − [k]

[k + 1]
ptUn−1 pt.

2. If εn−1(t) = −1, then we obtain

pt− = pt − [k + 2]
[k + 1]

ptUn−1 pt and pt+ =
[k + 2]
[k + 1]

ptUn−1 pt.

Proof. 1. If εn−1(t) = +1, then we are in the first situation of Figure 6. By

t

t+t−

t

t+t−

Figure 6: εn−1(t) = +1 on the left and εn−1(t) = −1 on the right hand side.

Definition 3.1.7, pt′ is of the form pt′ = ft′ xpk−1 x̃ and consequently pt′ , pt

and pt− are given by

pt′ = ft′
x

k − 1

x̃

, pt = ft′
x

k
x̃

and pt− = ft′ · [k]
[k + 1]

x

k

k
x̃

.

Now ptUn−1 pt looks like

ptUn−1 pt = f 2
t′

x
k

x̃
x

k
x̃

= f 2
t′

x
k

k − 1
x̃

x
k − 1

k
x̃

= ft′

x

k

k
x̃

,

since pk(pk−1 t 1) = pk and since the subdiagram pk−1xx̃pk−1 collapses to
f −1
t′ pk−1 by Remark 3.1.11. But this already implies the identity for pt− . On

the other hand, the identity for pt+ follows from (3.6).

2. If we had that εn−1(t) = −1, then we were in the second situation of Figure 6.
Similar as in the previous case, we know that pt′ = ft′ xpk+1 x̃, which implies
that pt′ , pt and pt+ are of the form

pt′ = ft′
x

k + 1
x̃

, pt =
[k + 1]
[k + 2]

ft′

x

k + 1
k
k + 1
x̃

and pt+ =
[k + 1]
[k + 2]

ft′

x
k + 1

k + 1

k + 1
x̃

.
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Considering ptUn−1 pt results in

ptUn−1 pt =
[k + 1]2

[k + 2]2 f 2
t′

x
k + 1

k + 1
x̃
x

k + 1

k + 1
x̃

=
[k + 1]2

[k + 2]2 ft′

x
k + 1

k + 1

k + 1
x̃

,

which implies the equation for pt+ . As before, the identity for pt− follows
from (3.6). �

We end this section as anounced before by showing the following proposition:

Proposition 3.1.21. Let t ∈ Std(λ). Then the path idempotent pt acts on S λ by
fixing t and sending every other basis element s , t of S λ to 0. Moreover pt acts
by 0 on S µ if µ , λ.

Proof. Let λ ∈ Par2(n) be a partition. We prove the statement by using induction
over n. For n = 1 this is clear, since there is only one partition, one path and one
path idempotent. Now assume that n ≥ 2 and let t ∈ Std(λ) be a path. Moreover,
let µ be the shape of t′ and set k = µ1 − µ2. If 0 < λ2 < λ1, there exists another
partition ν such that

S λ � S µ ⊕ S ν

as TLn−1-modules. If otherwise 0 = λ2 or λ2 = λ1, then S λ is isomorphic to S µ

as TLn−1-modules. In both cases, pt′ acts on a path s as it acts on s′, which means
explicitly that

pt′ .t = t (3.14)

and furthermore, if sn−1 is admissible for t, this also means that

pt′ .sn−1(t) = 0. (3.15)

The first step is to show that also pt fixes t. There are the following cases:

1. Assume that εn−1(t) = 1 and εn(t) = −1. Lemma 3.1.20 gives a description
for pt, namely

pt =
[k]

[k + 1]
pt′Un−1 pt′ . (3.16)
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Therefore applying (3.16), (2.20), (3.14) and (3.15) all together imply that

pt.t =
[k]

[k + 1]
pt′Un−1 pt′ .t =

[k]
[k + 1]

pt′Un−1.t

=
[k]

[k + 1]
pt′

(
aTL

d(t,n−1)(v)t +

√
aTL

d(t,n−1)(v)aTL
−d(t,n−1)(v)sn−1(t)

)
=

[k]
[k + 1]

aTL
d(t,n−1)(v)t. (3.17)

The condition εn−1(t) = 1 encodes that n− 1 is in the first row of t and on the
other hand εn(t) = 1 means that n is in the second row. This means that

d(t, n − 1) = c(t, n − 1) − r(t, n − 1) − (c(t, n) − r(t, n)) = λ1 − 1 − (λ2 − 2)

= λ1 − λ2 + 1 = µ1 − (µ2 + 1) + 1 = k,

which implies with (2.17) that aTL
d(t,n−1)(v) =

[k+1]
[k] . Substituting this into

(3.17) shows that pt.t = t.

2. Now assume that εn−1(t) = 1 = εn(t). This means d(t, n − 1) equals −1
and moreover it means that aTL

d(t,n−1)(v) = 0, hence Un−1 acts by 0 on t.
Lemma 3.1.20 describes pt by

pt = pt′ − [k]
[k + 1]

pt′Un−1 pt′ ,

implying

pt.t = pt′ .t − [k]
[k + 1]

pt′Un−1 pt′ .t = t − [k]
[k + 1]

pt′Un−1.t = t.

3. The cases, where εn−1(t) = −1 and εn(t) = ±1, work out in a similar way;
they are left as an exercise to the reader.

Now that pt is known to fix the basis element t ∈ S λ, let s ∈ S µ for µ ∈ Par2(n)
be another basis element different from t. Since ps fixes s and since ps and pt are
orthogonal, it follows easily that

pt.s = pt ps.s = 0.s = 0.

In particular, the statement is shown. �

Having the path idempotents pt properly introduced, it is time to turn the focus
to the so-called higher order Jones–Wenzl projectors. The next section is devoted
to define these and to characterize them by unique properties, as we did for the
Jones–Wenzl projector in Proposition 3.1.2.
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Section 3.1.3 Higher order Jones–Wenzl projectors

Following (CH15, Definition 2.23), we define the higher order Jones–Wenzl pro-
jectors corresponding to a partition as the sum of its path idempotents:

Definition 3.1.22. The kth higher order Jones–Wenzl projector is given by pn,k =∑
t∈Std(λ) pt, where λ = (λ1, λ2) ∈ Par2(n) is the unique diagram with λ1 − λ2 = k.

The first goal is to give a nice characterization of the pn,k, which can be found
in (CH15, Theorem 2.26). These properties are very similar to those of the Jones–
Wenzl projectors in Proposition 3.1.2 and proven mutatis mutandis.

Theorem 3.1.23. The higher order Jones–Wenzl projectors pn,k in the algebra TLn

are uniquely characterized by the following properties:

1. The element pn,k ∈ TLn has through-degree k.

2. For any d and a ∈ TLd,n of through-degree j < k the equalities apn,k = 0 and
pn,kã = 0 hold.

3. If a ∈ TLd,n is of through-degree k, then we obtain that apn,k = a + b, where
b ∈ TLd,n is an element of through-degree j < k.

Remark 3.1.24. Elements qn,k satisfying the above three properties are always
idempotent: The third property and the first imply

q2
n,k = qn,k + b,

where b is of through-degree j < k. Multiplying with qn, j from the right and the
second property let us deduce

0 = q2
n,kqn, j = qn,kqn, j + bqn, j = bqn, j = b + c, (3.18)

where c is of through-degree i < j. In particular, b must be 0 and hence q2
n,k = qn,k.

Proof of Theorem 3.1.23. It is easy to see that pn,k satisfies the three properties:

1. The first property follows by definition, since pn,k =
∑

t∈Std(λ) pt and by Ex-
ample 3.1.13, pt has through-degree k.

2. The second property follows from the fact that Ui pk = 0 = pkUi for all
Ui ∈ TLk, see Proposition 3.1.2.

3. The third follows from a = a1n =
∑n

j=1 apn, j =
∑k

j=1 apn, j, where we used
Proposition 3.1.17.

Suppose that some element e satisfies the three properties. If j < k, then the
second property for e implies that pn, je = 0. If j > k then the second property for
pn, j implies pn, je = 0. Now both together imply the equation

e = e1n =

n∑
j=1

epn, j = epn,k. (3.19)
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On the other hand, the third property for e implies epn,k = pn,k + b, where b is of
through-degree j < k. This and (3.19) gives

e = epn,k = ep2
n,k = (pn,k + b)pn,k = p2

n,k = pn,k. �

Corollary 3.1.25. The idempotent pn,k corresponds to the minimal central idem-
potent zλ, where λ1 − λ2 = k. In particular, pn,k is central.

Proof. Proposition 3.1.21 states, that the path idempotent pt for t ∈ Std(λ) acts on
S λ by fixing t and sending s , t to 0. This directly implies, that pn,k =

∑
t∈Std(λ) pt

acts as the identity on S λ. Since the identity zλ in End(S λ) is unique, we obtain
zλ = pn,k. �

Corollary 3.1.26. If Shape(t) , Shape(s), then ptTLn ps = 0 is trivial.

Proof. Let λ = Shape(t) and d = λ1 − λ2. Then Proposition 3.1.17 and Corol-
lary 3.1.25 imply

ptTLn ps = pt pd,nTLn,d ps = ptTLn,d pd,n ps = 0. �

The chosen aproach of this section makes it possible to get more insight con-
cerning the involved coefficents. This is carried out in detail in the next section.
We stress that the next section does only use diagramatic arguments, however it
tells the same story as (GW93).

Section 3.2 Specialization at a root of unity

In this section, we let q ∈ C× denote a fixed primitive 2lth root of unity, where l is
at least 3, i.e. we assume that q , ±i. We need this in this section, since otherwise
[2] = 0, so nearly all proofs of this section were not valid.

Now TLn(q) is not semisimple anymore, compare (HST15a, Proposition 5.1),
so not all Jones–Wenzl projectors are present. Already some path idempotents
cause problems, since their construction involves Jones–Wenzl projectors and quan-
tum integers [k], which are not always well-defined at v = q.

We start this section by specifying, what well-defined elements in TLn(q) are.
With more caution than in Section 3.1 we try to examine the relation between var-
ious path idempotents and also new idempotents, which are not necessarily path
idempotents. This is done in Section 3.2.1. After that it is possible to give in Sec-
tion 3.2.2 a description of the minimal central idempotents modulo the Jacobson
radical of TLn(v), which are idempotents, that are central up to elements in the
radical and minimal with that property. This is the main result of this section.

The statements in this section can be found in (GW93). Although our proofs
are motivated by those in (GW93), in some cases they are not entirely the same.
Infact, we only use diagramatic arguments. However, we stick to the naming of the
statements given in (GW93).
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We start by clarifying, what is meant by evaluable. Therefore let C[v]q denote
the subring of C(v) defined by

C[v]q :=
{

f
g

; f , g ∈ C[v], g(q) , 0
}
,

which is the subring of all rational functions, which can be evaluated at v = q.

Definition 3.2.1. (TLn)q is defined to be C-subspace of TLn consisting of the C[v]q-
span of words in U1, . . . ,Un−1. The elements in (TLn)q are called evaluable at q.

Since TLn is also a C-algebra, and (TLn)q is closed under multiplication, (TLn)q

is actually a unital C-subalgebra of TLn. The next proposition, which is actu-
ally (GW93, Proposition 0.1) and which we will not prove here, justifies Defi-
nition 3.2.1:

Proposition 3.2.2. The map defined from (TLn)q to TLn(q) by sending Ui to Ui and
v to q induces a surjective morphism of C-algebras.

The morphism above is called the evaluation morphism and for an evaluable
element x ∈ TLn, x(q) denotes the image of x in TLn(q). The following lemma,
needed for later results in Section 3.2.2, relates dimensions between TLn(q) and
TLn; it can also be found in (GW93, Proposition 0.1).

Lemma 3.2.3. If e and f are evaluable idempotents in TLn, then

dimC(eTLn f )(q) = dimC(v) eTLn f .

Proof. Assume that there is a linear relation in eTLn f given by

γ1b1 + · · · + γkbk = 0,

where γi ∈ C(v) and where the bi are words in U1, . . . ,Un−1 ∈ TLn. By multiplying
with a sufficiently high power of (v − q) a relation of the form

γ′1b1 + · · · + γ′kbk = 0 (3.20)

is obtained such that γ′i ∈ C(v)q. This is actually a linear relation in e(TLn)q f .
Without loss of generality, at least one coefficient γ′i can be assumed not to be
divisible by (v − q), since otherwise dividing (3.20) by (v − q) would still yield a
linear relation of the above form in e(TLn)q f . Therefore, evaluating (3.20) at v = q
results in a non-trivial linear relation in (eTLn f )(q), which means that

dimC(eTLn f )(q) ≤ dimC(v) eTLn f . (3.21)

But (3.21) does not only hold for the idempotents e and f , but also for the pairs of
idempotents (1 − e, f ), (e, 1 − f ) and (1 − e, 1 − f ). In particular, (3.21) implies

dimC TLn(q) = dimC(eTLn f )(q) + dimC(eTLn(1 − f ))(q) + dimC((1 − e)TLn f )(q)

+ dimC((1 − e)TLn(1 − f ))(q)

≤ dimC(v) eTLn f + dimC(v) eTLn(1 − f ) + dimC(v)(1 − e)TLn f

+ dimC(v)(1 − e)TLn(1 − f )

= dimC(v) TLn. (3.22)
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If (3.21) was strict, also (3.22) would be strict. But by (3.2.2) the inequality (3.22)
actually has to be an equality, yielding that (3.21) needs to be an equality. �

Now that we know, what evaluable elements are, the next step is to obtain an
understanding of relations between idempotents. The following definition is quite
standard:

Definition 3.2.4. Two idempotents f and e in a ring R are called equivalent, if
there exist elements u, v ∈ R, such that e = uv and f = vu.

As the name suggests, this is an equivalence relation. This definition is justified
by the following lemma, which is left as an exercise to the reader.

Lemma 3.2.5. Two idempotents e and f in a ring R are equivalent, if and only if
Re � R f as left R-modules.

With this in mind, following (GW93), we refine the definition of equivalence:

Definition 3.2.6. Two evaluable idempotents f , e ∈ TLn are called equivalent, if
there exist evaluable elements u, v ∈ TLn, such that e = uv and f = vu.

Often it is necessary to consider a set of pairwise equivalent and evaluable
idempotens. Such a set actually corresponds to a so-called system of matrix units:

Remark 3.2.7. Let u1, . . . , uk be a set of evaluable pairwise equivalent idempotents
and let the elements u1i and ui1 implement the equivalence between u1 and ui, i.e.
assume that u1iui1 = u1 and ui1u1i = ui. By setting ui j = uiui1u1 ju j, the set
{ui j}1≤i, j≤k actually satisfies the property

ui ju ji = ui =: uii for all 1 ≤ i, j ≤ k.

Moreover, it is easy to check, that one can actually assume

ui ju jl = uil for all 1 ≤ i, j, l ≤ k. (3.23)

A set of evaluable elements {ui j} satisfying (3.23) is called a set of evaluable ma-
trix units. Of course this is motivated by the matrix units Ei j ∈ MnC.

As now the termininology concerning evaluability and equivalence is specified,
before proving a bunch of technical statements in Section 3.2.1, a last definition is
needed. The next definition, following (GW93, Section 1), will be used to identify
the future evaluable path idempotents:

Definition 3.2.8. 1. A partition λ ∈ Par2(n) is called critical, if w(λ) := λ1 −
λ2 + 1 is divisible by l and the mth critical line in the branching graph is
the line consisting of all partitions λ, with w(λ) = ml. Likewise a tableau t
of shape λ is called critical, if λ is critical. We refer to the largest proper
critical subtableau of t (if it exists) as the critical subtableau of t.
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2. If a tableau has its critical subtableau r on the mth critical line, then its
conjugate t is defined to be the tableau corresponding to the path obtained
from t by fixing r and reflecting t \ r at the mth critical line. For any tableau
the element p[t] is defined to be p[t] = pt + pt, where pt := 0, if t does not
exist.

3. A critical tableau t is called evaluable, if pt is evaluable and a non-critical
tableau t is called evaluable, if p[t] is evaluable.

4. A tableau t is called regular, if any two successive critical diagrams on t are
on different critical lines.

There is only one instance, where t has a proper critical subtableau, but t does
not exists, namely if the critical subtableau ends on the first critical line and t ends
on the second.

Example 3.2.9. The branching graph with vertical dashed lines as critical lines for
l = 5 is illustrated in Figure 7, together with a critical regular tableau drawn by
dashed lines, an extension of that critical regular tableau and its conjugate.

Figure 7: A path and its conjugate.

Now the technical part of this thesis starts.

Section 3.2.1 Evaluable idempotents

This section mainly contains statements to prove Proposition 3.2.26 in the next
section. Our goals are

1. to show that regular critical tableaux are evaluable (Proposition 3.2.17) and

2. to construct new evaluable idempotents out of old ones, see Lemma 3.2.12,
Lemma 3.2.14 and Lemma 3.2.18,
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while keeping track of equivalence relations between the involved idempotents. As
already mentioned, the proofs are often motivated by those in (GW93, Section 1)
for the corresponding statements. However, the proofs presented here do not use
the representation theory of TLn but diagramatic arguements, which makes most
them more technical.

We start by regarding a “baby” case:

Proposition 3.2.10. Let r = ((1) = λ(1) → · · · → λ(n) = λ) be a tableau with no
proper critical subtableau, i.e. w(λ(i)) < l for all i. Then r is evaluable. Moreover,
if r̃ is also such a tableau of same shape λ, then pr and pr̃ are equivalent.

Proof. We use induction over n and use Lemma 3.1.20 to show that pr is evaluable.
For n = 1, the path idempotent is just 1 ∈ TL1, so there is nothing to show.

1. Suppose that εn−1(r) = 1. By induction the idempotent pr′ is evaluable and
non-zero. But Lemma 3.1.20 implies then

pr =
[k − 1]

[k]
pr′Un−1 pr′ or pr = pr′ − [k − 1]

[k]
pr′Un−1 pr′ ,

where k = λ(n−1)
1 − λ(n−1)

2 + 1 = w(λ(n−1)). Thus pr is evaluable. Since pr′ is
non-zero by induction hypothesis and since pr′Un−1 pr′ and pr′ have different
through-degrees in TLn, also pr is non-zero.

2. If εn−1(r) = −1, the second case of Lemma 3.1.20 applies, thus

pr =
[k + 1]

[k]
pr′Un−1 pr′ or pr = pr′ − [k + 1]

[k]
pr′Un−1 pr′ ,

where k = λ(n−1)
1 − λ(n−1)

2 + 1 = λ(n−2)
1 − λ(n−2)

2 , hence k + 1 = w(λ(n−2)) < l.
So again, pr stays evaluable, supposed pr′ is evaluable and similar as in the
first case pr is also non-zero if pr′ is non-zero.

What is left is to show equivalence between two tableaux satisfying the assump-
tions. But if t and s are two evaluable tableaux of the same shape λ, it actually
suffices to consider the case s = si(t) for some admissible transposition si, since
being equivalent is an equivalence relation, hence transitive. Moreover, only the
case i = n− 1, where n = λ1 + λ2 is treated here, the general case follows from this
one. The situation is illustrated in Figure 8. Let r = t′′ and let pr, ps and pt with

s t

λ

Figure 8: A path t ∈ Std(λ) and s = sn−1(t).

Definition 3.1.7 be given by
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pr = fr
x
d
x̃

, ps = fr
[d]

[d + 1]

d

d

d

x

x̃

and pt = fr
[d + 1]
[d + 2]

x

d + 1

d + 1

x̃

.

Now, if u =
[d+1]

[d] psUi pt and w =
[d+1]
[d+2] ptUi ps, then uw =

[d+1]2

[d+2][d] psUi ptUi ps is of
the form

f 3
r

[d + 1][d]
[d + 2]2

x

d + 1

d + 1

x̃
x

d

d

d

x̃

x

d

d

d

x̃

= f 3
r

[d]
[d + 1]

d

x

d

d

x̃
x

d

d

x̃
x

d
x

= fr
[d]

[d + 1]

d

x

d

d
x

= ps,

where we used that pd is idempotent, (3.4) and Remark 3.1.11. One can also show
that wu = pt by a similar argument. Furthermore both u and w are evaluable, since
pt and ps are, and since s and t are to the left of the first critical line, which means
that [d], [d + 1] and [d + 2] are non-zero and evaluable. �

The previous lemma just states, that to the left of the first critical line everything
is normal as in the generic case. Actually, the proof has the following consequence,
which could be stated early in this theorem:

Corollary 3.2.11. If t and s are of same shape, then ptTLn ps is one dimensional.

Proof. In the proof of Proposition 3.2.10 a non-zero element u ∈ ptTLn ps was
constructed, in particular, ptTLn ps is at least of dimension one. But since TLn =⊕

t,s ptTLn ps and since the dimension of TLn is given by the number of pairs of
paths of same shape (see Remark 2.2.6 ), this already implies that ptTLn ps must be
of dimension one. �

Now the first problems are to expect at the first critical line. The next lemma
(cf. (GW93, Little Diamond Lemma)) states the existence of new evaluable idem-
potents which are not path idempotents.
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Lemma 3.2.12 (Little Diamond Lemma). Let r be an evaluable critical tableau
of shape µ ∈ Par2(k) and set λ = (µ1 + 1, µ2 + 1) and d = µ1 − µ2. Let s be the
unique tableau ending in λ and extending r, such that t = sk(s) is standard (see
Figure 9). Then there exists a 3 × 3-system of evaluable matrix units in TLk+2 with
diagonal units equal to [2]pt, prUk+1 and pr([2]−Uk+1)pk+2,d = pr([2]−Uk+1)p[s].
In particular, pr pk+2,d = p[s] is evaluable.

We warn the reader, to proof consists of some tedious calculations.

Proof. As done often before, by abuse of notation we write pr instead pr t 1.
Moreover, let s̄ = sk+1(s). We will prove the lemma only for the first picture in

s

t

s̄

λ

µ

or

s

t

s̄

λ

µ

Figure 9: Paths t, s = sk(t) and s̄ = sk+1(s).

Figure 9, the second case works analoguously.
The first thing to do is showing that [2]pt and prUk+1 are equivalent; therefore

let u and w be defined by

u = (1 − pr)UkUk+1 pr and w = prUk+1Uk(1 − pr).

They are both evaluable, since pr is evaluable. To show equivalence between [2]pt

and prUk+1 it is sufficient to prove the following equations:

wu =
[d − 1]

[d]
prUk+1, (3.24)

uw = [2]
[d − 1]

[d]
pt. (3.25)

Proof of the equations (3.24) and (3.25). Starting with (3.24), Lemma 3.1.20 and
the fact that Uk+1 commutes with pr ∈ TLk imply

Uk+1 ps′Uk+1 =
[d]

[d + 1]
Uk+1 prUk prUk+1 =

[d]
[d + 1]

prUk+1 pr, (3.26)

This and Lemma 3.1.20 make

prUk+1Uk prUkUk+1 pr = Uk+1 prUk pr prUk prUk+1 =
[d + 1]2

[d]2 Uk+1 ps′Uk+1

=
[d + 1]

[d]
prUk+1 pr =

[d + 1]
[d]

prUk+1 pr, (3.27)
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hold. Moreover, (2.5) has as consequence

prUk+1UkUkUk+1 pr = [2]prUk+1UkUk+1 pr = [2]prUk+1 (3.28)

and therefore, it follows from (3.27) and (3.28), that

wu = prUk+1Uk(1 − pr)UkUk+1 pr = prUk+1UkUkUk+1 pr − prUk+1Uk prUkUk+1 pr

= [2]prUk+1 − [d + 1]
[d]

prUk+1 =
[d − 1]

[d]
prUk+1,

which is just (3.24).
Now let ω = t′′. Since pr pr′ = pr and pr′ − pr = pω by (3.6) and moreover,

since pr′ ∈ TLk−1 commutes with Uk and Uk+1, we obtain

uw = (1 − pr)UkUk+1 prUk+1Uk(1 − pr) = [2](1 − pr)Uk pr′ pr pr′Uk+1Uk(1 − pr)

= [2](pr′ − pr)Uk prUk+1Uk(pr′ − pr) = [2]pωUk prUk+1Uk pω
= [2]pωUk(pr′ − pω)Uk+1Uk pω
= [2]pωUkUk+1Uk pω − [2]pωUk pωUk+1 pωUk pω
= [2]pωUk pω − [2]pωUk pωUk+1 pωUk pω. (3.29)

Lemma 3.1.20 implies pωuk pω =
[d−1]

[d] pt′ and therefore from (3.29) it follows

uw = [2]
[d − 1]

[d]
pt′ − [2]

[d − 1]2

[d]2 pt′Uk+1 pt′ = [2]
[d − 1]

[d]

(
pt′ − [d − 1]

[d]
pt′Uk+1 pt′

)
= [2]

[d − 1]
[d]

pt,

where Lemma 3.1.20 was used for the last equality. But this is just (3.25). �

Now [2]pt and pr([2] − Uk+1)pn,k are known to be equivalent. With

ŵ = ([2] − Uk+1)prUk(1 − pr)pt and û = pt(1 − pr)Uk([2] − Uk+1)pr, (3.30)

the elements [2]pt and pr([2]−Uk+1)pn,k will be equivalent by showing the follow-
ing equations:

ûŵ = [2]
[d − 1][d + 2]

[d]2 pt, (3.31)

ŵû =
[d − 1][d + 2]

[d]2 pr([2] − Uk+1)pn,k. (3.32)

Proof of the equations (3.31) and (3.32). Lemma 3.1.20 implies that

Uk prUk = Uk

(
pr′ − [d − 1]

[d]
pr′Uk−1 pr′

)
Uk = [2]Uk p′r −

[d − 1]
[d]

pr′Uk

=
[d + 1]

[d]
pr′Uk (3.33)

45



and Lemma 3.1.20 that

pωUk pω =
[d − 1]

[d]
pt′ . (3.34)

So together (3.33) and (3.34) yield

pt(1 − pr)Uk prUk(1 − pr)pt = pt pωUk prUk pωpt =
[d + 1]

[d]
pt pωUk pr′ pωpt

=
[d + 1][d − 1]

[d]2 pt pt′ pt =
[d + 1][d − 1]

[d]2 pt, (3.35)

where we used the second part of Remark 3.1.8 for t, t′, ω = t′′ and r′ = ω′.
Moreover, pr commuting with [2]−Uk+1 and ([2]−Uk+1)2 = [2]([2]−Uk+1) imply

ûŵ = pt(1 − pr)Uk([2] − Uk+1)pr([2] − Uk+1)prUk(1 − pr)pt

= [2]
(
pt(1 − pr)Uk([2] − Uk+1)prUk(1 − pr)pt

)
= [2]

(
[2]pt(1 − pr)Uk prUk(1 − pr)pt − pt(1 − pr)UkUk+1 prUk(1 − pr)pt

)
.

Substituting (3.35) and (3.25) shows now

ûŵ = [2]
(
[2]

[d − 1][d + 1]
[d]2 pt − 1

[2]
uw

)
= [2]

(
[2]

[d − 1][d + 1]
[d]2 pt − [d − 1]

[d]
pt

)
= [2]

[d − 1][d + 2]
[d]2 pt.

which is (3.31). The last equation to show is (3.32). Applying (3.11) and using
pt = pt(ps + pt) results in the equality

ptUk([2] − Uk+1)pr = pt(ps + pt)Uk([2] − Uk+1)pr = ptUk(ps + pt)([2] − Uk+1)pr

= ptUk ps([2] − Uk+1)pr. (3.36)

since ptUk+1 = 0 by 3.7 and since pt pr = 0, because t is not an extension of r. The
equations ps = ps(ps + ps̄), (3.11) and (3.36) imply together

ptUk([2] − Uk+1)pr = ptUk ps([2] − Uk+1)pr = ptUk(ps + ps̄)([2] − Uk+1)pr

= ptUk([2] − Uk+1)(ps + ps̄)pr

= ptUk([2] − Uk+1)pr pk+2,d, (3.37)

since pk+2,d =
∑
σ∈Std(λ) pσ by Definition 3.1.22. Observe also that

pr′(1 − pr)pk+2,d = pωpk+2,d = pt′ pk+2,d = pt pk+2,d, (3.38)

which implies with (3.37) and the fact that pk+2,d is central idempotent, that

ptUk([2] − Uk+1)pr = ptUk([2] − Uk+1)pr pk+2,d

= pt pk+2,dUk([2] − Uk+1)pr pk+2,d

= pr′(1 − pr)pk+2,dUk([2] − Uk+1)pr pk+2,d

= pωUk([2] − Uk+1)pr pk+2,d. (3.39)
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Similar to (3.26), Lemma 3.1.20 implies

Uk pωUk = Uk

(
[d − 1]

[d]
pr′Uk−1 pr′

)
Uk =

[d − 1]
[d]

pr′Uk. (3.40)

Then (3.40) and (3.39) together yield

Uk ptUk([2] − Uk+1)pr = Uk pωUk([2] − Uk+1)pr pk+2,d

=
[d − 1]

[d]
pr′Uk([2] − Uk+1)pr pk+2,d

=
[d − 1]

[d]
pr′Uk pr([2] − Uk+1)pr pk+2,d,

which also implies with Lemma 3.1.20 that

prUk ptUk([2] − Uk+1)pr =
[d − 1]

[d]
prUk pr([2] − Uk+1)pr pk+2,d

=
[d − 1][d + 1]

[d]2 ps′([2] − Uk+1)pr pk+2,d

=
[d − 1][d + 1]

[d]2 ps′([2] − Uk+1)(ps′ + ps̄′)pk+2,d.

(3.41)

Lemma 3.1.20 also implies

ps′([2] − Uk+1)ps′ pk+2,d =

(
[2] − [d]

[d + 1]

)
ps pk+2,d =

[d + 2]
[d + 1]

ps pk+2,d. (3.42)

Moreover, with ps̄Uk+1 ps̄ = −psUk+1 ps̄ +Uk+1 ps from (3.11), Lemma 3.1.20 gives

([2] − Uk+1)ps′([2] − Uk+1)ps̄′ pk+2,d

= ([2] − Uk+1)ps([2] − Uk+1)ps̄ pk+2,d = −([2] − Uk+1)psUk+1 ps̄ pk+2,d

= ([2] − Uk+1)ps̄Uk+1 ps̄ pk+2,d + ([2] − Uk+1)Uk+1 ps

= ([2] − Uk+1)ps̄′Uk+1 ps̄′ pk+2,d = ([2] − Uk+1)
[d + 2]
[d + 1]

ps̄ pk+2,d. (3.43)

Now we can deduce from (3.30) , (3.41), (3.42) and (3.43) that

ŵû = ([2] − Uk+1)prUk ptUk([2] − Uk+1)pr pk+2,d

=
[d − 1][d + 1]

[d]2 ([2] − Uk+1)ps′([2] − Uk+1) (ps′ + ps̄′) pk+2,d

=
[d − 1][d + 1]

[d]2 ([2] − Uk+1)
(
[d + 2]
[d + 1]

ps pk+2,d +
[d + 2]
[d + 1]

ps̄ pk+2,d

)
=

[d − 1][d + 2]
[d]2 ([2] − Uk+1) (ps + ps̄) pk+2,d,
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which implies with (ps + ps̄) pk+2,d = p[s] pk+2,d = pr pk+2,d that

ŵû =
[d − 1][d + 2]

[d]2 ([2] − Uk+1)pr pk+2,d =
[d − 1][d + 2]

[d]2 pr([2] − Uk+1)pk+2,d,

so finally (3.32) is shown. �

Since [2]pt and pr([2]−Uk+1)p[s] are now equivalent ((3.24), (3.25),(3.31) and
(3.32)) and evaluable (u, w, û and ŵ were evaluable), also the sum

pr([2] − Uk+1)p[s] + prUk+1 = pr[2]pk+2,d = pr[2]p[s]

is evaluable and hence pr pk+2,d is. �

In Lemma 3.2.12, we saw evaluability of p[s], where s = r+− for a evaluable
critical tableau r. Now the next lemma (cf. (GW93, Interpolation Lemma)) gen-
eralizes this statement; it states that whenever the critical subtableau is evaluable,
also p[s] is so. As the previous proof, the following proof is rather calculation
heavy.

Lemma 3.2.13 (Interpolation lemma).

Let t be a tableau with evaluable critical subtableau r.

1. p[t] is evaluable. In particular, if r ends on the first critical line and t on the
second critical line, then pt = p[t] is evaluable.

2. Let s be another tableau with same critical subtableau and same shape as t.
Then p[t] and p[s] are equivalent.

Proof. Let ∅ → (1) = λ(1) → · · · → λ(n) be the path associated to t and let k ≤ n,
such that the critical subtableau r of t is of shape µ = λ(k). Assume that r ends
on the mth critical line. Moreover, we can also assume that λ(n) is to the right of
the mth critical line (if not take t instead of t), i.e. w(λ(n)) ≥ ml. Furthermore, let
λ̄ = Shape(t̄). We use induction over n − k to prove the statement. Clearly the case
n − k = 1 holds, since then p[t] = pt + pt = pr t 1 is evaluable, and moreover
n − k = 2 implies that

p[t] = (pr t 1)pk,d or p[t] = (pr t 1)(1 − pk,d),

where d = λ(n)
1 − λ(n)

2 = µ1 + 1 − µ2 − 1 = µ1 − µ2, thus for n − k = 2 the statement
follows from Lemma 3.2.12. Therefore n− k is assumed to be at least 3 and p[t′] to
be evaluable by induction hypothesis. There are the following cases:

1. Assume that λ(n) = (λ(n−2)
1 + 1, λ(n−2)

2 + 1) and assume that εn(t) = −1: The
situation is illustrated in Figure 10. Since n − k ≥ 3, λ(n−2) is not critical, so
t̄ , sn−1(t). Therefore, it follows from Corollary 3.1.19 that pt′Un−1 pt̄′ = 0
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t

λ

t̄

λ̄

Figure 10: A path t and its conjugate t̄ with εn(t) = −1.

and moreover, defining the element E by E = p[t′]Un−1 p[t′], together with
Lemma 3.1.20 yields

E = pt′Un−1 pt′ + pt̄′Un−1 pt̄′ =
[w(λ) + 1]

[w(λ)]
pt +

[w(λ̄) − 1]
[w(λ̄)]

pt̄.

Therefore (3.1.17) implies

p[t] =

(
[w(λ)+1]

[w(λ)] +
[w(λ̄)−1]

[w(λ̄)]

)
E − E2

[w(λ)+1]
[w(λ)]

[w(λ̄)−1]
[w(λ̄)]

. (3.44)

t′ being to the right of the critical line and t beeing not on a critical line,
together give ml + l − 1 ≥ w(λ(n)) = w(λ(n−2)) ≥ ml + 2 and ml − l + 1 ≤
w(λ̄) ≤ ml − 2. Therefore, (3.44) implies that p[t] is evaluable. The case
εn(t) = 1 is similar.

2. If λ(n) = (λ(n−2)
1 + 2, λ(n−2)

2 ) or if λ(n) = (λ(n−2)
1 , λ(n−2)

2 + 2), with s defined as
the unique extension of t′ different from t, then the statement for s follows
by the previous case. But then p[t] = p[t′] t 1 − p[s] is also evaluable.

Now we turn our focus to showing equivalence. The path s can be obtained form
t by applying a sequence of simple transpositions, as usual it suffices to assume
s = si(t) for some i. We further assume that i = n − 1, the general case follows
from this one. Setting

u = p[s]Ui p[t] and u′ = p[t]Ui p[s],
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and using psUi pt̄ = 0 = ps̄Ui pt from Corollary 3.1.19, implies

uu′ = psUi ptUi ps + ps̄Ui pt̄Ui ps̄. (3.45)

By using Lemma 3.1.20 similar as for (3.26) and applying Lemma 3.1.20 again,
we can deduce that

psUi ptUi ps =
[w(λ) − 1]

[w(λ)]
[w(λ) + 1]

[w(λ)]
ps, (3.46)

ps̄Ui pt̄Ui ps̄ =
[w(λ̄) − 1]

[w(λ̄)]
[w(λ̄) + 1]

[w(λ̄)]
ps̄., (3.47)

where

c =
[w(λ) − 1]

[w(λ)]
[w(λ) + 1]

[w(λ)]
and c̄ =

[w(λ̄) − 1]
[w(λ̄)]

[w(λ̄) + 1]
[w(λ̄)]

.

Substituting (3.46) and (3.47) into (3.45) implies

uu′ = cps + c̄ps̄. (3.48)

Similarly one can show that

u′u = cpt + c̄pt̄. (3.49)

The equations (3.48) and (3.49) have as consequence the equations

(uu′ − c̄)ps̄ = 0 = (uu′ − c)ps,

(u′u − c̄)pt̄ = 0 = (u′u − c)pt,

and therefore, we obtain

(u′u − c)(u′u − c̄)p[t] = 0 = (uu′ − c)(uu′ − c̄)p[s]. (3.50)

Then (3.50) together with u′up[s] = 0 = uu′p[t], because of (3.48) and (3.49), give
the two equations

(u′u − c)(u′u − c̄)
cc̄

(p[s] + p[t]) = p[t] (3.51)

(uu′ − c)(uu′ − c̄)
cc̄

(p[s] + p[t]) = p[s]. (3.52)

Setting w = −uu′u−(c+c)u
cc with (3.51) and (3.52) imply that

p[s] = u′w and p[t] = wu′,

which means that p[s] and p[t] are equivalent. �

As before, also the next statement has a quite technical proof. It will be used
to connect the evaluable idempotents by equivalence in the next section.
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Lemma 3.2.14. Let r be an evaluable critical tableau of shape µ ∈ Par2(k) and
set λ = (µ1 + 1, µ2 + 1). Consider the six extensions of r of length k + 3 which
end in (µ1 + 1, µ2 + 2) or in (µ1 + 2, µ1 + 1) and let t denote the left most of those
(see also Figure 11). Then there is a 3 × 3-system of evaluable matrix units in
TLk+3 with diagonal matrix units [2]p[t], prUk+1 and pr([2] − Uk+1)pk+2,d where
d = µ1 − µ2 = λ1 − λ2.

Proof. We are in the situation of Figure 11, where the path r ends in µ, t is the
left most path ending in (µ1 + 1, µ2 + 2) and t̄ is the right most path ending in
(µ1 + 2, µ2 + 1). By Lemma 3.2.13 p[t] is evaluable and by Lemma 3.2.12 prUk+1

µ

r

t s

w

t̄s̄

w̄

µ

r

t s

w

t̄s̄

w̄

µ

r

t s

w

t̄s̄

w̄

Figure 11: The path r and its six extensions t, s, w t̄, s̄ and w̄.

is evaluable too. Again by Lemma 3.2.12, it suffices to show equivalence between
[2]p[t] and prUk+1. Let u and u′ be defined by

u = prUk+1Uk+2 p[t] and u′ = p[t]Uk+2Uk+1 pr. (3.53)

We first show the following two equations:

−u′uu′u − [2](c + c̄)u′u
[2]cc̄

= [2]p[t], (3.54)

−uu′uu′ − [2](c + c̄)uu′

[2]cc̄
= prUk+1, (3.55)

where c =
[d−1]

[d] and c̄ =
[d+3]
[d+2] are non-zero and evaluable, since d + 1 = w(µ) = ml.

Proof of the equations (3.54) and (3.55). Since pr ∈ TLk commutes with Uk+1 and
Uk+2 and since pr p[t] = p[t], the following holds:

u′u = p[t]Uk+2Uk+1 pr prUk+1Uk+2 p[t] = p[t] prUk+2Uk+1Uk+1Uk+2 p[t]

= [2]p[t]Uk+2Uk+1Uk+2 p[t] = [2]p[t]Uk+2 p[t]. (3.56)

With Corollary 3.1.19, (3.56) actually refines to

u′u = [2]ptUk+2 pt + [2]pt̄Uk+2 pt̄. (3.57)
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and applying Lemma 3.1.20 to pt and pr̄ in (3.57) yields

u′u = [2] (cpt + c̄pt̄) . (3.58)

Using (3.58) implies

u′uu′u − [2](c + c̄)u′u = [2]2(c2 pt + c̄2 pt̄) − [2](c + c̄)[2] (cpt + c̄pt̄)

= −[2]2cc̄(pt + pt̄) = −[2]2cc̄p[t]

and moreover

−u′uu′u − [2](c + c̄)u′u
[2]cc̄

= [2]p[t],

which is just (3.54). To show (3.55) we have to work a little more.
Since Uk+2 commutes with pt′′ ∈ TLk+1, Lemma 3.1.20 implies

Uk+2 pt′Uk+2 = Uk+2

(
pt′′ − pt′′Uk+1 pt′′

[d + 1]
[d]

)
Uk+2

= Uk+2 pt′′Uk+2 − pt′′Uk+2Uk+1Uk+2 pt′′
[d + 1]

[d]

= [2]Uk+2 pt′′ − pt′′Uk+2 pt′′
[d + 1]

[d]
= Uk+2 pt′′

(
[2] − [d + 1]

[d]

)
= Uk+2 pt′′

[d − 1]
[d]

. (3.59)

By applying Lemma 3.1.20 and substituting (3.59) twice, one sees

Uk+2 ptUk+2 =
[d]

[d − 1]
Uk+2 pt′Uk+2 pt′Uk+2 = Uk+2 pt′Uk+2 pt′′

= Uk+2 pt′′
[d − 1]

[d]
pt′′ =

[d − 1]
[d]

Uk+2 pt′′ = cUk+2 pt′′ . (3.60)

Similarly the equation

Uk+2 pt̄Uk+2 = c̄pt̄′′Uk+2. (3.61)

holds. Then (3.60) and (3.61) imply together

uu′ = prUk+1Uk+2(pt + pt̄)Uk+2Uk+1 pr

= prUk+1Uk+2 ptUk+2Uk+1 pr + prUk+1Uk+2 pt̄Uk+2Uk+1 pr

= cprUk+1Uk+2 pt′′Uk+1 pr + c̄prUk+1 pt̄′′Uk+2Ūk+1 pr

= cUk+1Uk+2 pt′′Uk+1 + c̄Uk+1 pt̄′′Uk+2Ūk+1, (3.62)

where we also used, that pt′′ ∈ TLk+1 commutes with Uk+2 and that pr ∈ TLk

commutes with Uk+1. If s and w denote the other two extensions of r ending in
Shape(t) (see Figure 11), then s is an extension of t′′ and w of t̄′′. In particular,

pt̄′′Uk+2Uk+1(pw + ps) = pt̄′′Uk+2(pw + ps)Uk+1 = pt̄′′Uk+2 psUk+1

= pt̄′′Uk+2(ps + pt)psUk+1 = pt̄′′(ps + pt)Uk+2 psUk+1 = 0 (3.63)
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holds by Lemma 3.1.18 and (3.7). (3.62) followed by (3.63) imply

uu′Uk+1(pw + ps) = (cUk+1Uk+2 pt′′Uk+1 + c̄Uk+1 pt̄′′Uk+2Uk+1) Uk+1(pw + ps)

= cUk+1Uk+2 pt′′Uk+1Uk+1(pw + ps)

= [2]cUk+1Uk+2 pt′′(ps + pw)Uk+1

= [2]cUk+1Uk+2(ps + pw)Uk+1

= [2]cUk+1Uk+2Uk+1(ps + pw) = [2]cUk+1(ps + pw), (3.64)

where we also used Lemma 3.1.18. Similarly to (3.64), one can show that

uu′Uk+1(pw̄ + ps̄) = [2]c̄Uk+1(ps̄ + pw̄) (3.65)

holds. Now (3.53), (3.64), (3.65) and Uk+1 p[t] = 0, because of (3.7), imply together

[2]uu′ = uu′Uk+1 pr = uu′Uk+1(pw + ps) + uu′Uk+1(pw̄ + ps̄)

= [2]cUk+1(ps + pw) + [2]c̄Uk+1(ps̄ + pw̄)

which implies that

uu′ = cUk+1(ps + pw) + c̄Uk+1(ps̄ + pw̄). (3.66)

(3.53) and applying (3.66) twice let us obtain

uu′uu′ = uu′prUk+1Uk+2 p[t]Uk+2Uk+1 pr

=

(
[2]cUk+1(ps + pw) + [2]c̄Uk+1(ps̄ + pw̄)

)
Uk+2 p[t]Uk+2Uk+1 pr

= [2]
(
c(ps + pw) + c̄(ps̄ + pw̄)

)
prUk+1Uk+2 p[t]Uk+2Uk+1 pr

= [2]
(
c(ps + pw) + c̄(ps̄ + pw̄)

)
uu′

= [2]
(
c(ps + pw) + c̄(ps̄ + pw̄)

)(
cUk+1(ps + pw) + c̄Uk+1(ps̄ + pw̄)

)
= [2]

(
c(ps + pw) + [2]c̄(ps̄ + pw̄)

)2
Uk+1

= [2]
(
c2(ps + pw) + [2]c̄2(ps̄ + pw̄)

)
Uk+1, (3.67)

where we also used the second part of Remark 3.1.8 for r and its extensions s, w,
s̄ and w̄. With uu′pt = 0 = uu′pt̄, because of Uk+1 pt = 0 = Uk+1 pt̄, (3.67) implies
now

uu′uu′ − [2](c + c̄)uu′ = −[2]cc̄(ps + pw)Uk+1 − [2]c̄c(ps̄ + pw̄)Uk+1

= −[2]cc̄prUk+1. (3.68)

Dividing (3.68) by [2]cc̄ gives (3.55), which was to prove. �
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Finally setting

û = −uu′u − [2](c + c̄)u
[2]cc̄

implements with (3.54) and (3.55) the wanted equivalence, namely we obtain that

u′û = [2]p[t] and ûu′ = prUk+1.

Note u′ and û are evaluable since p[t] and prUk+1 are, which we mentioned in the
beginning of this proof. �

The following lemma is only needed for a later proof. Recall that [n]q denotes
the quantum evaluated at q.

Lemma 3.2.15. For m ≥ 1 the function

Tk =

(
[ml − 2]
[ml − 1]

)k−1 [ml − 1]
[ml]

+

(
[ml + 2]
[ml + 1]

)k−1 [ml + 1]
[ml]

(3.69)

is evaluable at q and Tk(q) = ([2]2
q + 2 − 2k)[2]k−2

q . In particular, Tk(q) , 0 for
k ≥ 3.

Proof. It is sufficient to treat the case m = 1, since a 2lth root of unity is also a mlth
root of unity. We proceed by induction over k. For k = 1, it is clear that Tk = [2]
and Tk(q) = [2]q. For bigger k the function Tk satisfies

Tk =

(
[l − 2]
[l − 1]

)k−1 [l − 1]
[l]

+

(
[l + 2]
[l + 1]

)k−1 [l + 1]
[l]

=
[l − 2]
[l − 1]

( [l − 2]
[l − 1]

)k−2 [l − 1]
[l]

+

(
[l + 2]
[l + 1]

)k−2 [l + 1]
[l]


+

(
[l + 2]
[l + 1]

)k−2 (
[l + 2]
[l + 1]

[l + 1]
[l]

− [l − 2]
[l − 1]

[l + 1]
[l]

)
=

[l − 2]
[l − 1]

Tk−1 +

(
[l + 2]
[l + 1]

)k−2 (
[l + 2]

[l]
− [l − 2]

[l − 1]
[l + 1]

[l]

)
. (3.70)

A little calculation, which is left to the reader, shows that

[l + 2]
[l]

− [l − 2]
[l − 1]

[l + 1]
[l]

=
(vl + v−l)(v − v−1)

vl−1 − v−l+1 ,

which is evaluable at q with value (1+1)(q−q−1)
q−1−q = −2. Therefore, (3.70) and the

induction hypothesis imply that

Tk =
[l − 2]
[l − 1]

Tk−1 +

(
[l + 2]
[l + 1]

)k−2 (
[l + 2]

[l]
− [l − 2]

[l − 1]
[l + 1]

[l]

)
is evaluable in q with value Tk(q) = ([2]2

q + 2 − 2k)[2]k−2
q . �
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The next lemma (cf. (GW93, Big Diamond Lemma)) is somehow the peak
of this section, it will provide the means to show the main result of this section,
namely the statement regarding evaluability of regular critical tableaux. Moreover,
it will be necessary to discuss nilpotent elements in the next section. To fix termini-
nology for what comes, an idempotent p ∈ TLn is said to dominate an idempotent
f ∈ TLn, if p f = f = f p.

Lemma 3.2.16 (Big Diamond Lemma). Let t be a tableau such that both t and
its critical subtableau r end on the same critical line. If pr is evaluable, then p[t]
dominates an evaluable minimal idempotent f , such that the coefficients a and b
in pt f pt = apt and pt̄ f pt̄ = bpt̄ have simple poles at v = q. Moreover, f satisfies
f pt f = a f and f pt̄ f = b f .

Proof. Suppose that Shape(r) = µ ∈ Par2(k) is on the mth critical line and that
Shape(t) = (µ1 + n, µ2 + n). Instead of considering t it is more convenient to first
treat the following “zig-zag” path

s = sn = (r → µ(k+1) → · · · → µ(k+2n)) = (µ1 + n, µ2 + n)

defined by

εi(sn) =



εi(r), if i ≤ k,
−1, if i = k + 1,
−1, if i = k + 2 j, for 1 ≤ j ≤ n − 1,
+1, if i = k + 2 j + 1, for 0 ≤ j ≤ n − 1,
+1, if i = k + 2n.

Figure 12 shows the paths s and s̄ and their, supposed that pr = fr xpd x̃. To under-
stand the pictures, the following remark might be helpful:

1. For each pair (k + 2 j + 1, k + 2 j + 2), the “zig-zag” path s has a “hook”,
namely εk+2 j+1(s) = +1 and that εk+2 j+2 = −1. These “hooks” correspond
to the n− 2 Jones–Wenzl projectors pd−1 sitting above and below the middle
projector pd in ps.

2. s̄ has one “hook” more, and these to the n − 1 Jones–Wenzl projectors pd+2
sitting above or below the middle.

Moreover following carefully the construction of the coefficients fs and fs̄ for ps

and ps̄ in Definition 3.1.5 shows that

fs = fr ·
(
[d − 1]

[d]

)n−1 [d]
[d + 1]

, (3.71)

fs̄ = fr ·
(
[d + 2]
[d + 3]

)n−1 [d + 1]
[d + 2]

. (3.72)
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s̄s

λ

µ

ps = fs

x

d

d − 1

d − 1

x̃

d

d − 1

d − 1

d ps̄ = fs̄

x

d + 2

d + 2

d + 2

x̃

d + 2

d + 2

d + 2

Figure 12: A path s, its conjugate s̄ and their path idempotents ps and ps̄.

The elements u, u′,w and w′ are now defined by

u = un = (Uk+1Uk+2 · · ·Uk+2n−1)(Uk+2Uk+4 · · ·Uk+2n−2) and w = up[s],

u′ = u′n = (Uk+2Uk+4 · · ·Uk+2n−1)(Uk+1Uk+2 · · ·Uk+2n−1) and w = p[s]u′.

The outline of this proof is now to show that, if rescaled by an non-zero evaluable
scalar, the element ww′ enjoys the properties of the idempotent f of the statement.

1. We first show that w′ and w are evaluable. Let s2, . . . , sn−2 denote the “zig-
zag” paths ending in (µ1 + 2, µ2 + 2), . . . , (µ1 + n − 1, µ2 + n − 1) and let s1
denote the path ending in (µ1 + 1, µ2 + 1) as in Lemma 3.2.12. Then p[s1] is
evaluable by Lemma 3.2.12 and ui p[si] is evaluable by induction hypothesis
for 2 ≤ i ≤ n − 1. However, every path idempotent pσ, where σ extends
r, is either mapped to 0 under Uk+2 · · ·Uk+2n−2 by (3.7) or contained in the
decomposition of one of the p[si] or of p[s], which implies

upr = up[s] +

n−1∑
i=1

up[si].

Thus w is evaluable. Similarly, w′ is too.

2. It is also clear that w′w is dominated by p[s].

3. The next step is to show the equations

psw′wps = Aps (3.73)

ps̄w′wps̄ = Bps̄ (3.74)

where A and B are coefficients having poles at v = q. Since

u′u =
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psu′ups equals

f 2
s

x

d

d − 1

d − 1

x̃

d

d − 1

d − 1

d

x

d

d − 1

d − 1

x̃

d

d − 1

d − 1

d

= [2]n f 2
s

x

d

d − 1

d − 1

x̃

d

d − 1

d − 1

d

x

d

d − 1

d − 1

x̃

d

d − 1

d − 1

d

= [2]n f 2
s

fr

x

d

d − 1

d − 1

x̃

d

d − 1

d − 1

d .

which implies
psw′wps = ps p[s]u′up[s] ps = psu′ups = [2]n fs

fr
ps. (3.75)

Moreover, substituting (3.71) into (3.75) gives

psw′wps = [2]n
(
[d − 1]

[d]

)n−1 [d]
[d + 1]

ps = [2]n
(
[ml − 2]
[ml − 1]

)n−1[ml − 1]
[ml]

ps =: An ps
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which is just (3.73). Now for the second equation, using

k + 1 =

(
[2] − [k]

[k + 1]

)
k =

[k + 2]
[k + 1]

k ,

we can calculate that ps̄u′ups̄ equals

f 2
s̄

x

d + 2

d + 2

d + 2

x̃

d + 2

d + 2

d + 2

x

d + 2

d + 2

d + 2

x̃

d + 2

d + 2

d + 2

= f 2
s̄

(
[d + 3]
[d + 2]

)2n−2

[2]n

x

d + 2

d + 2

d + 2

x̃

d + 1

d + 1

d + 1

x̃

d + 2

d + 2

d + 2

x

d + 1

d + 1

d + 1

=
f 2
s̄

fr

(
[d + 3]
[d + 2]

)2n−2

[2]n
(
[d + 2]
[d + 1]

)2

x

d + 2

d + 2

d + 2

x̃

d + 2

d + 2

d + 2

,
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which implies

ps̄u′ups̄ =
fs̄

fr

(
[d + 3]
[d + 2]

)2n−2

[2]n
(
[d + 2]
[d + 1]

)2

ps̄. (3.76)

But substituting (3.72) into (3.76) yields

ps̄u′ups̄ =

(
[d + 3]
[d + 2]

)n−1

[2]n [d + 2]
[d + 1]

ps̄ = [2]n
(
[ml + 2]
[ml + 1]

)n−1 [ml + 1]
[ml]

ps̄,

and moreover,

ps̄w′wps̄ = ps̄u′ups̄ = [2]n
(
[ml + 2]
[ml + 1]

)n−1 [ml + 1]
[ml]

ps̄ := Bps̄

which shows (3.74).

4. What is left is rescaleing w′w by a non-zero and evaluable coefficent, which
turns it into an idempotent. Similar as before, one can calculate

u′upsu′upr = u′upr · A and u′ups̄u′upr = u′upr · B,

which is leaft to the reader. This implies

p[s]u′upsu′up[s] = Aw′w and p[s]u′ups̄u′up[s] = Bw′w,

and moreover,

w′ww′w = p[s]u′upsu′up[s] + p[s]u′ups̄u′up[s] = (A + B)w′w.

On the other hand, since A + B = Tn from (3.69), which is non-zero and
evaluable, setting f = 1

Tn
w′w provides an idempotent enjoying the properties

of the statement for the idempotent p[s].

It remains to observe, that the equivalence given in Lemma 3.2.13 preserves poles,
so one can easily deduce the claim of the Big Diamond Lemma for general t from
that for the chosen s. �

So far we did not construct that many evaluable path idempotents, most of our
proven statements assumed the existence of such an evaluable path idempotent.
But now we are in a good shape to obtain family of evaluable path idempotents:

Proposition 3.2.17.

1. Every regular critical tableau is evaluable.

2. Two regular critical tableaux with same critical subtableau and same shape
are equivalent.
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t̄t

ss̄

t̄t

ss̄

Figure 13: A regular tableau t, s = s j(t) its conjugate s̄.

Proof. We first show that every regular critical tableau t is evaluable by using in-
duction over the number of critical partitions on t considered as a path. If this num-
ber is 1 or 2, than t is evaluable by Proposition 3.2.10 respectively Lemma 3.2.12.

Therefore t is assumed to have at least 3 critical partitions and induction hy-
pothesis assures every regular tableau with fewer critical partitions is evaluable.

1. If t̄ does not exist, we know that t ends on the second critical line and its
critical subtableau on the first. In particular, Lemma 3.2.13 and the induction
hypothesis imply that p[t] = pt is evaluable.

2. Now we consider the case where t = ([1] → λ(2) → · · · → λ(k) = λ) has
its last three critical partitions λ(i), λ( j) and λ(k) = λ on the mth, (m ± 1)th
and on the mth critical lines. By excluding the first case, we can assume that
pt̄ exists. Set s = s j(t). The situation is illustrated in Figure 13. Now the
subpath of t of shape λ( j) is evaluable by induction so by Lemma 3.2.13 also
p[t] is evaluable. But also the subpath ending on λ(i) is evaluable by induction
hence p[s] is. Therefore both p[s] and p[t] are evaluable. By Lemma 3.2.16,
the idempotent p[s] dominates an evaluable minimal idempotent f , such that

ps f ps = bps and f ps f = b f (3.77)

where b has a simple pole in q. Defining u = f U j p[t] and u∗ = p[t]U j f and
using (3.7) implies first

pt̄U j = 0 = U j pt̄ (3.78)

and second with Corollary 3.1.19 that

ptU j ps̄ = 0 = ps̄U j pt (3.79)

60



Furthermore, the equations (3.77), (3.78) and (3.79) together assure that

u∗u = p[t]U j f U j p[t] = ptU j f U j pt = ptU j p[s] f p[s]U j pt

= ptU j ps f psU j pt = ptU jbpsU j pt (3.80)

holds. In the proof of Proposition 3.2.10, we saw that

ptU j psU j pt = cpt where c =
[d + 2][d]
[d + 1]2 and d + 2 = (m ± 1)l, (3.81)

so substituting (3.81) in (3.80) implies

pt =
1
cb

u∗u, (3.82)

which is then evaluable, since b has a simple pole in q and c a simple zero.
On the other side, (3.77), (3.78) and (3.79) also ensure

uu∗ = f U j p[t]U j f = f psU j ptU j ps f + f ps̄U j pt̄U j ps̄︸         ︷︷         ︸
=0

f

= f cps f = bc f , (3.83)

where we used psU j ptU j ps = cps similar to (3.81). However, (3.82) and
(3.83) imply that

f =
1
bc

uu∗ and pt =
1
bc

uu∗ (3.84)

are equivalent.

3. If the last three critical diagrams on t are all on different critical lines, then
t̄ is evaluable by the previous case. Since p[t] is evaluable by the induction
hypothesis and Lemma 3.2.13, also pt is evaluable.

Any other critical tableau s with same critical subtableau can be obtained by a
sequence of simple transpositions. The same proof as in Proposition 3.2.10 shows,
that ps and pt are equivalent, since the equivalence in Proposition 3.2.10 preserves
poles and zeros. �

Now that regular critical tableaux of same shape and same critical subtableaux
are equivalent, this section ends with the following lemma implementing an equiv-
alence between two certain regular critical tableaux of same shape, but having
different critical subtableaux.

Lemma 3.2.18. Fix m ≥ 1 and let t be the unique tableau of shape λ = ((m + 1)l−
1, l) which passes through the diagram ((m + 1)l− 1), i.e. t corresponds to the path
obtained by going (m + 1)l − 1 steps to the right followed by l steps to the left in
the branching graph (see Figure 14). Then pt is equivalent to pr, where r is the
tableau of shape λ with critical subtableau of shape ((m − 1)l − 1).
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t

ss̄

r

t

ss̄

r

Figure 14: A regular tableau t, s = s j(t), its conjugate s̄ and r = si(s̄).

Proof. Set s = si(t) and r = s j(s), where i = (m + 1)l − 1 and j = ml − 1. Now
pt, pr and pr̄ are evaluable by Proposition 3.2.17, in fact, (3.84) implies

pt =
1
bc

u∗u and f =
1
bc

uu∗,

where c =
[(m+1)l][(m+1)l−2]

[(m+1)l−1]2 is given by (3.81) and where f is an evaluable idempo-
tent satisfying

ps f ps = bps and ps̄ f ps̄ = b̄ps̄

With w = f U j p[r] and w∗ = p[r]U j f , one can show, similar as for (3.84), that

pr =
1
b̄c̄

w∗w and f =
1
b̄c̄

ww∗,

where c̄ =
[(m−1)l+2][(m−1)l]

[(m−1)l+1]2 . But this actually means, that pr and f are equivalent,
yielding equivalence between pr and pt. �

Now that we have proven most of the technical properties concering evaluabil-
ity and equivalence between path idempotents and other idempotents, we can turn
our attention to some more interesting results.

Section 3.2.2 The structure of TLn(q) at a root of unity

This section is dedicated to structure results in the non-semisimple Temperley–
Lieb algebra. As before, the statements of this section can be found in (GW93,
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Section 2). The presented proofs are basically those of (GW93), however, we filled
in some details. First, some new termininology is needed:

Definition 3.2.19. Let λ be a diagram between the mth and the m+1st critical line,
i.e. ml < w(λ) < (m + 1)l, where m = 0 is allowed.

1. We say that t ∈ Std(λ) is coming from the right, if its critical tableau ends
on the m + 1th critical line, otherwise it is said to come from the left. R(λ) ⊂
Std(λ) will denote the subset of tableaux coming from the right and L(λ) the
subset of those coming from the left.

2. The elements zR
λ and zL

λ are defined by

zR
λ =

∑
t∈R(λ)

p[t] and zL
λ =

∑
t∈L(λ)

p[t].

with fλ := #Std(λ), f L
λ := #L(λ) and f R

λ := #R(λ).

Before formulating the main result of this section, we make the following ob-
servation:

Remark 3.2.20. 1. Clearly Std(λ) is the disjoint union of L(λ) and R(λ).

2. The summands of zL
λ and zR

λ are not necessarily evaluable.

3. Let A(1)
1 be the group of reflections on Z about the number ml,m ∈ Z, which

acts on diagrams of fixed size by reflecting about critical lines. In particular,
if µ is the diagram obtained from λ by reflecting about the m + 1st critical
line, we see that zR

λ = zL
µ and moreover f R

λ = f L
µ . Consequently one obtains

f L
λ = fλ − f R

λ = fλ − f L
µ and furthermore f L

λ = fλ − fµ + . . . .

[λ] denotes be the orbit of λ under the action of A(1)
1 and z[λ] is defined to be∑

µ∈[λ] zµ. Moreover, µ and ν in [λ] are said to be adjacent, if there is exactly one
critical line between µ and ν and they are obtained from each other by reflecting
about that line. By the radical, we mean the Jacobson radical, i.e. the ideal gener-
ated by all elements annihilating all modules. For example all nilpotent elements
are included in the radical. We denote it by rad. The main result of this section is
the following statement, which can be found in (GW93, Theorem 2.3):

Theorem 3.2.21. If λ is non-critical, then z[λ](q) is a minimal central idempotent
in TLn(q). The radical of z[λ]TLn(q) is nilpotent of order 3 and is spanned by the
spaces zL

µTLnzL
ν (q) for pairs of adjacent diagrams µ, ν in the orbit [λ] and by the

algebras rad(zL
µTLnzL

µ(q)) for µ ∈ [λ]. Moreover, the maximal semisimple quotient
of z[λ]TLn(q) is isomorphic to

⊕
µ∈[λ] M f L

µ
C.

To investigate this, more notation is needed:
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Definition 3.2.22. Let λ = (λ1, λ2) ∈ Par2(n), n ≥ 2 be a partition. If λ1 > λ2, α =

(λ1−1, λ2) is called the left subdiagram and if λ2 ≥ 1, the partition β = (λ1, λ2−1)
is called the right subdiagram.

Remark 3.2.23. It is clear that fλ = fα + fβ and moreover, the folllowing identities
hold:

fλ = f L
α + f L

β and f R
λ = f R

α + f R
β , if α, β are non-critical, (3.85)

f L
λ = fα + f L

β and f R
λ = f R

β , if α is critical, (3.86)

f R
λ = fβ + f R

α and f L
λ = f L

α , if β is critical. (3.87)

Together with fλ = f L
λ + f R

λ , these formulas will allows us to use induction in what
follows.

To simplify the proof of the next proposition, it is convenient to refine the
notation of matrix units, see Remark 3.2.7). Therefore we fix the following ter-
mininology:

Definition 3.2.24. Let z ∈ TLn be an idempotent and f a natural number. A z-
system of matrix units U = {ui j, 1 ≤ i, j ≤ f } is a system of matrix units ui j , 0
in TLn, such that the idempotents uii are pairwise orthogonal and dominated by z
for all i and such that they sum up to z. U is said to have order f . U contains an
idempotent p, if p = uii for an i ∈ {1, . . . , f }. Moreover, U is called minimal, if f is
the maximal natural number such that there exists a z-system of evaluable matrix
units of order f . Finally, U is said to be equivalent to an idempotent r if one (or
all) elements of U are equivalent to r.

Remark 3.2.25. 1. Let U = {ui j} be a z-system containing p and assume that
p is equivalent to p′, i.e. uu∗ = p′ and u∗u = p. Then there exists a z-system
V = {vi j} containing p′ of same order than U, by setting

vi j =


uu1 j, i = 1,
ui1u∗, j = 1,
ui j, otherwise,

where we assumed without loss of generality that p = u11.

2. To obtain a zλ-system of evaluable matrix units of order f , clearly it suf-
fices by Remark 3.2.7 to have f pairwise orthogonal and pairwise equivalent
evaluable idempotents dominated by zλ.

Now having a bunch of statements coming from Section 3.2.1 and also having
fixed the termininology, following (GW93, Proposition 2.1), we can produce a
sufficient number of evaluable idempotents.

Proposition 3.2.26.
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1. If λ is a critical partition, then there exists a minimal zλ-system of evaluable
matrix units of order fλ containing at least one pt for t ∈ Std(λ) regular.
Moreover for any two regular tableaux s and t in Std(λ) the idempotents pt

and ps are equivalent.

2. If λ is a non-critical diagram, then there exists a minimal zL
λ-system of evalu-

able matrix units or order f L
λ containing at least one p[t] for t ∈ L(λ) regular.

Furthermore, for any two regular tableaux s and t in L(λ) the elements p[t]
and p[s] are equivalent.

The proof takes a couple of pages. However, since the statement is proved
by one induction, we believe, that it is better to understand, if not splitted up into
smaller pieces. The reader may forgive us this inconvenience.

Proof. The statements of the proposition hold already in the following cases:

1. If λ is critical with only one row, i.e. λ2 = 0, then clearly zλ = pt. Now the
statements are just a reformulation of Proposition 3.2.17.

2. If λ is non-critical and has only one row, then its critical subdiagram is evalu-
able by Proposition 3.2.17 and by Lemma 3.2.13 also zL

λ = p[t] is then evalu-
able. Likewise equivalence follows by Lemma 3.2.13.

3. If λ is a diagram left of the first critical line, i.e. if w(λ) < l, then Proposi-
tion 3.2.10 implies that zλ =

∑
t∈Std(λ) pt is evaluable and it also states that all

the summands are equivalent.

We proceed by induction on λ1 + λ2 and by excluding the above three cases, we
can assume that λ2 , 0 and that the statements of the proposition hold for all
diagrams of size less then λ1 + λ2. In particular, both α and β exist and they enjoy
the statements of the proposition.

Moreover, zλ has a minimal system of matrix units of order fλ containing a reg-
ular pt, but which is not necessarily evaluable. Therefore it suffices to find a system
of evaluable matrix units of order fλ containing a regular pt, it will automatically
be minimal. The same is of course true for zL

λ . There are four cases to consider,
namely the cases where

1. λ is critical,

2. α is critical,

3. β is critical or

4. neither λ, nor α and nor β are critical.

We start be regarding the first one:
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1. If λ is on the mth critical line, let µ = (λ1 − 1, λ2 − 1). Let r ∈ Std(µ) be
a tableau, such that its critical subtableau is of shape ((m − 1)l − 1) or if
m = 1, let r have no critical subtableau. Since r is regular, it is evaluable
by Proposition 3.2.10, if m = 1, and by Proposition 3.2.17, if m , 1. Let
t ∈ Std(λ), such that t and r enjoy the assumptions of Lemma 3.2.12, the
situation is then described by the first picture in Figure 9. In particular, t is
also regular, thus evaluable, similar as r is, by applying Proposition 3.2.10
respectively Proposition 3.2.17.

(a) We first produce a zL
αzλ-system of evaluable matrix units of order f L

α

containing pt. By induction hypothesis, there exists a minimal zL
α-

system U = {ui j}1≤i, j≤ f L
α

of evaluable matrix of order f L
α containing

p[w] = u11 for some w ∈ L(α). However, by Proposition 3.2.10 (if
m = 1) or by Proposition 3.2.17 (if m , 1), we see that p[w] is equiva-
lent to p[t′], thus by Remark 3.2.25, we can assume that w = t′.
Now set vi j = ui1 ptu1 j for 1 ≤ i, j ≤ f L

α . Then V = {vi j} is a zL
αzλ-

system of evaluable matrix units of order f L
α , which contains pt = v11.

(b) Now we produce a zL
βzλ = zR

αzλ-system of evaluable matrix units of
order 2 fµ = f R

α + f L
β , which is equivalent to pt.

By induction assumption, there exists zµ-system U of evaluable matrix
units containing pr (using Remark 3.2.25) and which is of order fµ.

i. Every x ∈ U is equivalent to pr, which implies that also xUn−1 and
x([2]−Un−1)zλ are equivalent to prUn−1 and pr([2]−Un−1)zλ, since
x and pr are elements of TLn−2 and Un−1 commutes with TLn−2 ⊂
TLn. In particular, this means that there are 2 fµ evaluable, pairwise
orthogonal and pairwise equivalent idempotents all equivalent to
prUn−1.

ii. Since t was chosen to satisfy the assumptions of Lemma 3.2.12
together with r, all those 2 fµ idempotents of the previous part are
equivalent to [2]pt. Consequently, dividing by [2] yields 2 fµ =

f R
α + f L

β evaluable, pairwise orthogonal and pairwise equivalent
idempotents all equivalent to pt.

All these idempotents are dominated by zL
βzλ = zR

αzλ, which means,
that they give rise to a zR

αzλ-system of evaluable matrix units of order
2 fµ = f R

α + f L
β , which is equivalent to pt.

(c) Now we look for a zR
β zλ-system of evaluable matrix units of order f R

β

equivalent to pt.

i. If λ2 < l, then f R
β = 0, thus there would be nothing to show.

ii. If λ2 = l, then f R
β = 1 implies, that there is exactly one tableau t̂

of shape λ with critical subtableau of shape ((m + 1)l + 1). More-
over, pt̂ is evaluable by Proposition 3.2.17 and equivalent to a path
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idempotent pr̂ by Lemma 3.2.18, which is then again equivalent to
pt by Proposition 3.2.17, thus pt̂ is equivalent to pt.

iii. Now suppose that λ2 > l. Let r̂ ∈ Std(µ) with critical subtableau of
shape ((m+1)l−1) and t̂ ∈ Std(λ) with same critical subtableau sat-
isfy the assumptions of Lemma 3.2.12. The situation corresponds
to the second picture in Figure 9.
By the induction assumption for zR

β , which equals to zL
β̄
, where β̄

is the diagram obtained from β by reflecting it about the m + 1th
critical line, we can argue as in the first subcase (1.a) to obtain
a zR

β zλ-system V of evaluable matrix units of order f R
β contain-

ing pt̂. In particular, Lemma 3.2.12 implies that V is equivalent
to [2]−1 · pr̂Un−1, which is equivalent to [2]−1 prUn−1 since pr̂ is
equivalent to pr in TLn−2 by induction assumption. But then V is
also equivalent to pt.

Since zL
αzλ, zR

αzλ and zR
β zλ are orthogonal, we obtain by part (1.a), (1.b) and

(1.c) a set of fα + 2 f R
α + f R

β pairwise orthogonal and pairwise equivalent
evaluable idempotents (all were equivalent to pt). In particular, since

fλ = fα + fβ = f L
α + f R

α + f R
α + f L

β = f L
α + f R

α + f R
α + f R

β , (3.88)

this gives rise to a zλ-system of evaluable matrix units containing pt, where
t ∈ Std(λ) is regular.

To finish this case, it remains to show, that for two regular tableaux s and t
of shape λ the elements pt and ps are equivalent. If t and s come both from
the right or both from the left side, we know that p[t′] and p[s′] are equiva-
lent by induction hypothesis (and evaluable since their critical subtableaux
are regular). By using the fact that zλ is central and that ps = zλp[s′] and
pt = zλp[t′] equivalence of pt and ps follows as well. On the other hand,
we already showed the equivalence of two particular, regular tableaux, one
coming from the left and one from the right, namely pt and pt̂.

2. Now suppose that λ is non-critical and β is critical and choose a regular
t ∈ L(λ). Induction hypothesis assures a zL

α-system U = {ui j} of evaluable
matrix units of order f L

α = f L
λ , such that U, using Remark 3.2.25, contains

p[t′]. In particular, setting vi j = ui1 p[t]u1 j and using zL
λ = zL

αzλ yields a zL
λ-

system of evaluable matrix units of order f L
λ containing p[t]. Escpecially zL

λ is
evaluable. For two regular tableaux t, s ∈ L(λ), the elements p[t′] and p[s′] are
equivalent by induction assumption. But zL

λ being evaluable and commuting
with p[t′] and p[s′] implies together with p[s] = p[s′]zL

λ and p[t] = p[t′]zL
λ , that

p[s] and p[t] are equivalent.

3. Now suppose that α is critical.

(a) We first produce a zL
λzα-system of evaluable matrix units of order fα

equivalent to p[T ], such that T̄ ∈ L(λ) is regular. Let r be a critical
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regular tableau ending in (α1 − 1, α2 − 1) and let t ∈ Std(α) enjoy to-
gether with r the assumptions of Lemma 3.2.12. By induction, there is
a zα-system U of evaluable matrix units of order fα containing a regular
path idempotent pw and by using Remark 3.2.25, we can assume that
w = t. But then by Lemma 3.2.12, pt is equivalent to 1

[2] prUn−1 and
moreover, by Lemma 3.2.14 this is equivalent to p[T ], where T̄ ∈ L(λ)
enjoys together with r the assumptions of Lemma 3.2.14.
In particular, U is a zL

λzα-system of evaluable matrix units of order fα
equivalent to p[T ], where T̄ ∈ L(λ) is regular.

(b) Induction hypothesis gives us a zL
β -system {ui j} of evaluable matrix

units of order f L
β containing a regular p[w],w ∈ L(β) and Remark 3.2.25

ensures, that we can assume w = T ′. In particular, setting vi j =

ui1 p[t]u1 j gives rise to a zL
βzL
λ-system of evaluable matrix units of or-

der f L
β containing p[T ].

By using f L
λ = fα + f L

β and the fact that zL
βzL
λ and zαzL

λ are orthogonal and
sum up to zL

λ , we obtain a zL
λ-system of evaluable matrix units of order f L

λ

containing p[T ], where T̄ ∈ L(λ) is regular. In particular, zL
λ is evaluable.

If S and T are two regular tableaux ending in λ and if they are both com-
ing from the left or the right, then p[S ] and p[T ] are equivalent due to the
following facts:

p[T ] = zL
λ p[T ′], and p[S ] = zL

λ p[S ′], (3.89)

p[S ′] and p[T ′] are equivalent by induction hypothesis, (3.90)

zL
λ is central in (zα + zL

β )TLn(zα + zL
β ). (3.91)

But it is already known that p[S ] = pS ′ and p[T ] are equivalent for two par-
ticular, S with S ′ ∈ Std(α) and T with T ′ ∈ L(β), namely S ′ = t̂ and T from
above.

4. The last case to consider is that the diagrams λ, α and β are all non-critical.

If t ∈ L(λ) is any regular tableau, such that t′ ∈ L(α) and t′′ has shape
(λ1 − 1, λ2 − 1), let s = sn−1(t) ∈ L(λ) such that s′ ∈ L(β). Then p[t′], p[t], p[s]
and p[s′] are evaluable by induction hypothesis and Lemma 3.2.13, since
their common critical subtableau is regular and moreover, Lemma 3.2.13
implies that p[t] and p[s] are equivalent.

The induction hypothesis gives rise to a zL
α-system U of evaluable matrix

units of order f L
α , containing, using Remark 3.2.25, the idempotent p[t′].

Setting vi j = ui1 p[t]u1 j, yields as before a zL
αzL
λ-system of evaluable matrix

units of order f L
α containing p[t′]. Argueing similarly implies existence of

a zL
βzL
λ-system of evaluable matrix units of order f L

β containing p[s]. Both
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t
s t̄

T

Figure 15: A non-critical tableau t with critical subtableau of shape (ml − 1), s =

sml−1(t) and an extension T of t.

systems form a zL
λ system of evaluable matrix units of order f L

λ = f L
α + f L

β

containing p[t], since p[t] and p[s] were equivalent.

Again, if w is another regular path with w ∈ L(λ), then p[w] is equivalent
to p[t] due to (3.89),(3.90) and (3.91), where one has to replace zα by zL

α in
(3.91).

Now all cases are treated. �

With this family of evaluable idempotents at hand, we would like to describe
the minimal central idempotents modulo the radical using the idempotents zλ re-
spectively zL

λ . This is formulated in the next theorem, however to prove it, we first
need a lemma to identify nilpotent elements:

Lemma 3.2.27 ((GW93, Nilpotent elements)). Let t be a non-critical tableau with
critical tableau of shape (ml − 1) for some m ≥ 1 having its endpoint to the left of
the mth critical line and moreover let the path s defined to be s = sml−1(t), see also
Figure 15. Defining n[t] = p[t]Uml−1 p[t] implies that:

1. n[t] is evaluable but nilpotent of order 2, if evaluated at v = q.

2. p[t]TLn p[t](q) is two dimensional and isomorphic to C[x]/(x2).
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3. p[t]TLn p[s](q) and p[s]TLn p[t](q) are one dimensional.

4. p[t]TLn p[s]TLn p[t](q) = Cn[t](q) and

p[s]TLn p[t]TLn p[s](q) =

{0}, m = 1,
Cn[s](q), otherwise.

5. n[t]TLn p[s](q) = p[s]TLnn[t](q) = {0} and if m > 1, also

p[t]TLnn[s](q) = n[s]TLn p[t](q) = {0}.

Proof. The critical subtableaux of s and t are regular hence evaluable and further-
more, by Lemma 3.2.13 p[s] and p[t] are evaluable.

1. (3.7) implies Uml−1 pt̄ = 0, which gives rise to

p[t]Uml−1 p[t] = ptUml−1 pt =
[ml]

[ml − 1]
pt, (3.92)

where the last equality follows by a little diagramatic argument. Note that pt

is not necessary evaluable, thus evaluating at q is not permitted to obtain 0.
But (3.92) implies

n2
[t] =

[ml]
[ml − 1]

p[t]Uml−1 p[t], (3.93)

which can be evaluated at q yielding n2
[t](q) = 0 since [ml] = 0. To see that

p[t]Uml−1 p[t](q) , 0, let T be an extension of t ending on the mth critical line
and also having its critical subtableau of shape (ml − 1), see Figure 15.

Applying Lemma 3.2.16 to T implies the existence of an evaluable minimal
idempotent f dominated by p[T ], such that the coefficient b in f pT f = b f
has a simple pole in v = q. (3.92) lets us then deduce

f p[t]Uml−1 p[t] f =
[ml]

[ml − 1]
f pt f =

[ml]
[ml − 1]

f pT f =
[ml]

[ml − 1]
b f . (3.94)

However, [ml]
[ml−1] b is regular at q, thus we can evaluate (3.94) to obtain that

f p[t]Uml−1 p[t] f (q) , 0. In particular, n[t](q) = p[t]Uml−1 p[t](q) , 0.

2. ptUml−1 pt , 0 in TLn implies

dimC(v) ptTLn pt = 1 = dimC(v) pt̄TLn pt̄. (3.95)

and furthermore 3.1.19 gives rise to

dimC(v) pt̄TLn pt = 0 = dimC(v) ptTLn pt̄. (3.96)
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since t̄ and t are of different shapes. But then (3.95) and (3.96) together yield

dimC(v) p[t]TLn p[t] = 2,

which implies on the other hand with Lemma 3.2.3 that

dimC p[t]TLn p[t](q) = 2. (3.97)

Since p[t] and n[t] are non-zero, evaluable and since p[t] is idempotent, but
n[t] nilpotent, they must form a basis. An isomorphism is given by mapping
p[t] to 1 and n[t] to x.

3. This follows from applying Corollary 3.2.11, Corollary 3.1.19, (3.95) and
Lemma 3.2.3.

4. The previous part implies

dimC p[t]TLn p[s]TLn p[t](q) ≤ 1. (3.98)

Setting

u = p[s]Uml−1 p[t] and u∗ = p[t]Uml−1 p[s]. (3.99)

lets us calculating

u∗u = p[t]Uml−1 p[s]Uml−1 p[t] = ptUml−1 psUml−1 pt

=
[ml][ml − 2]

[ml − 1][ml − 1]
pt =

[ml − 2]
[ml − 1]

n[t], (3.100)

where the third equality follows by a little diagramatic argument, which
was for example done in the proof of 3.2.10. Evaluating at q implies that
u∗u(q) = [2]qn[t](q), so u(q) and u∗(q) are both non-zero and forthermore
dimC p[t]TLn p[s]TLn p[t](q) = 1.

• If m = 1, then p[s] = ps and s is left to the first line, hence evaluable by
Proposition 3.2.10. Moreover, one can obtain similar as (3.100) that

uu∗ = psUml−1 ptUml−1 ps =
[ml][ml − 2]

[ml − 1][ml − 1]
ps. (3.101)

Evaluating this at v = q yields uu∗(q) = 0, since u and u∗ were evalu-
able. But p[s]TLn p[t]TLn p[s] is one dimensional and generated by uu∗,
which is non-zero in TLn, thus p[s]TLn p[t]TLn p[s](q) = 0,

• On the other hand m > 1 implies that the critical subtableau of s is of
shape ((m − 1)l − 1) and that s(m−1)l−1 is admissible for s̄. Defining

w = p[s]U(m−1)l−1 p[t] and w∗ = p[t]U(m−1)l−1 p[s], (3.102)
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allows us to obtain

ww∗ =
[(m − 1)l][(m − 1)l − 2]

[(m − 1)l − 1][(m − 1)l − 1]
ps̄ =

[(m − 1)l − 2]
[(m − 1)l − 1]

n[s], (3.103)

since [(m−1)l]
[(m−1)l−1] ps̄ = n[s]. Consequently, evaluating this at v = q yields

ww∗(v) = cn[s](q) for some non-zero c, since nominator and denomi-
nator each are evaluable at q and since n[s] is evaluable.

5. Using (3.92) and (3.99) it is easy to see that

n[t]u∗ =
[ml]

[ml − 1]
p[t]Uml−1 p[s] and un[t] =

[ml]
[ml − 1]

p[s]Uml−1 p[t]

are both 0 at q. Moreover, if m > 1, (3.103) and (3.99) give rise to

u∗n[s] = u∗
[(m − 1)l]

[(m − 1)l − 1]
ps̄ = p[t]Uml−1 ps̄

[(m − 1)l]
[(m − 1)l − 1]

= 0,

n[s]u =
[(m − 1)l]

[(m − 1)l − 1]
ps̄u = p[s]Uml−1 ps̄

[(m − 1)l]
[(m − 1)l − 1]

= 0,

since p[t]Uml−1 ps̄ = 0 by Corollary 3.1.19, which is already true in TLn. �

Having talked about nilpotent elements, we can now prove (GW93, Theorem
2.2):

Theorem 3.2.28. 1. If λ is critical, then zλ(q) is evaluable and minimal central
as an idempotent in TLn(q). Furthermore, zλTLn(q) � M fλC.

2. If λ is non-critical, then zL
λ is evaluable. Moreover,

(a) zL
λTLnzL

λ(q) � M f L
λ
C, if λ is to the left of the first critical line and

(b) zL
λTLnzL

λ(q) �
{(

A B
0 A

)
, A, B ∈ M f L

λ
C
}
, if not.

Proof. 1. If λ is critical, then zλ is evaluable by Proposition 3.2.26 and more-
over it is known to be minimal central. By Lemma 3.2.3, we obtain that
dim zλTLn(q) = f 2

λ , so if U = {ui j} is a minimal zλ-system of evaluable
matrix units enjoying Proposition 3.2.26, then ui j 7→ Ei j implements an iso-
morphism zλTLn(q) � M fλC, where Ei j is the canonical basis of M fλC.

2. The same is true if λ is non-critical but left of the first critical line, since in
this case, one actually has zL

λ = zλ.

3. Finally if λ is non-critical and between the mth and the m + 1th critical lines
for a m ≥ 1, then zL

λ is evaluable by Proposition 3.2.26. In TLn the element
zL
λ satisfies =

∑
t∈L(λ) pt + pt, thus, with dim ptTLn ps = 0, we obtain that

dimC(v) zL
λTLnzL

λ =
∑

t,s∈L(λ)

dim(ptTLn ps) + dim(pt̄TLn ps̄) = 2( f L
λ )2,
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implying with Lemma 3.2.3, that dimC zL
λTLnzL

λ(q) = 2( f L
λ )2. Now Proposi-

tion 3.2.26 states the existence of a zL
λ-system U = {ui j} of evaluable matrix

units of order f L
λ such that U contains u11 = p[t], where t̄ ∈ R(λ) is an evalu-

able regular tableau of shape λ with critical subtableau of shape (ml − 1)
(using Remark 3.2.25). Now n[t] = p[t]Uml−1 p[t] is non-zero and nilpotent
of order 2 by Lemma 3.2.27, therefore it follows, that N =

∑
ui1n[t]u1i is

also non-zero and nilpotent of order 2, but commuting with all ui j. Thus
the subalgebra of zL

λTLnzL
λ(q) generated by N and the matrix units ui j is by

Lemma 3.2.27 isomorphic to M f L
λ
C⊗C[x]/(x2), which is also isomorphic to{(

A B
0 A

)
, A; B ∈ M f L

λ
C
}
. Since its dimension is 2( f L

λ )2, it must already be all
of zL

λTLnzL
λ(q). �

We now want describe the blocks, the radical and the semisimple quotient of
TLn(q). We know that nilpotent central elements are always contained in the Ja-
cobson radical. Before proving the main theorem, we start with:

Lemma 3.2.29. For ν, µ ∈ [λ] adjacent and to the right of the first critical line

zL
µTLnzL

ν (q)rad(zL
νTLnzL

ν (q)) = rad(zL
µTLnzL

µ(q))zL
µTLnzL

ν (q) = {0}

holds. Moreover,

zL
µTLnzL

νTLnzL
µ(q) = rad(zL

µTLnzL
µ(q)).

Proof. Without loss of generality, ν is assumed to be to the left of µ and moreover
let ν be also between the mth and the m + 1th critical line for m ≥ 1.

1. The proof of Theorem 3.2.28 explains why the radical of zνTLnzν(q) is gen-
erated by

N =
∑

ui1n[s]u1i,

where U = {ui j} is a zL
ν -system of evaluable matrix units of order f L

ν contain-
ing p[s], where s ∈ L(ν) is a regular tableau with critical subtableau of shape
(ml − 1) and where n[s] = p[t]Uml−1 p[s]. Remark 3.2.25 lets us assume that
sm(l+1)−1 is admissible for s and that t = sm(l+1)−1(s) is regular in R(ν) with
critical subtableau of shape (m(l + 1) − 1), i.e. the situation is that in Fig-
ure 15, such that ν = Shape(s) = Shape(t) and µ = Shape(t̄). In particular,
applying Lemma 3.2.27, its fourth part states that

rad(zL
νTLnzL

ν (q)) = NzL
νTLnzL

ν (q). (3.104)

Let V = {vi j} be a zL
µ-system of evaluable matrix units of order f L

µ containing
p[t]. V exists, since t is regular and in L(µ), since t ∈ R(ν), so we can assume
that v11 = p[t] and that

vii = vi1 p[t]v1i (3.105)
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With

zL
µTLnzL

νN ⊂ span(zµTLnzνn[s]TLn), (3.106)

the equations (3.104), (3.106), (3.105) and the fact zL
µ =

∑
i vii imply

zL
µTLnzL

ν rad(zL
νTLnzL

ν )(q) = zL
µTLnzL

νNzL
νTLnzL

ν (q)

⊂ span(zµTLnzνn[s]TLnzL
νTLnzL

ν )

⊂ span(
∑

i

vi1 p[t]TLnn[s]TLn(q)),

which is {0} by the fifth part of Lemma 3.2.27.

2. The same works also to show that rad(zL
µTLnzL

µ(q))zL
µTLnzL

ν (q) = (0).

The second equation directly follows from the fact that N[s] generates the radical
and from the fourth part of Lemma 3.2.27. �

Now we are in a position to prove the following theorem, which is the main
result Theorem 3.2.21 of this section:

Theorem 3.2.30 (Theorem 2.3, (GW93)). If λ is non-critical, then z[λ](q) is a
minimal central idempotent in TLn(q). The radical of z[λ]TLn(q) is nilpotent of
order 3 and is spanned by the spaces zL

µTLnzL
ν (q) for pairs of adjacent diagrams

µ, ν in the orbit [λ] and by the algebras rad(zL
µTLnzL

µ(q)) for µ ∈ [λ]. The maximal
semisimple quotient of z[λ]TLn(q) is isomorphic to

⊕
µ∈[λ] M f L

µ
C.

Proof. The element z[λ] :=
∑
µ∈[λ] zL

µ =
∑
µ∈[λ] zµ is an evaluable central idempo-

tent.

1. We first calculate the radical of z[λ]TLn(q). It is clear that

z[λ]TLn =
⊕
µ,ν∈[λ]

zL
µTLnzL

ν (3.107)

(a) Assume that µ, ν ∈ [λ] are adjacent. Without loss of generality ν is to
the left of µ, i.e. ν1 ≤ µ1, thus every path t ∈ L(µ) satisfies

p[t] = pt + pt̄ and t̄ ∈ Std(ν).

In particular, for a path s ∈ L(ν), psTLn pt is one dimensional, so the
dimension of zL

µTLnzL
ν ⊂ TLn is the number of those (pt, ps) pairs, i.e.

f L
µ f L

ν . However, Lemma 3.2.3 implies then dim zL
µTLnzL

ν (q) = f L
µ f L

ν .

(b) If µ and ν are not adjacent, then Corollary 3.1.19 implies that zL
µTLnzL

ν =

{0}.
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By the above two points, (3.107) refines as follows:

z[λ]TLn =
⊕
µ∈[λ]

zL
µTLnzL

µ ⊕
⊕
µ,ν∈[λ]

µ,νadjacent

zL
µTLnzL

ν . (3.108)

Moreover, using Lemma 3.2.29 implies now that

R[λ] :=
⊕
µ,ν∈[λ]

µ,ν adjacent

zL
µTLnzL

ν (q) ⊕
⊕
µ∈[λ]

rad(zL
µTLnzL

µ(q))

is a nilpotent ideal in z[λ]TLn(q). But the quotient is semisimple:

z[λ]TLn(q)/R[λ] =
⊕
µ∈[λ]

zL
µTLnzL

µ(q)/rad(zL
µTLnzL

µ(q)) �
⊕
µ∈[λ]

M f L
µ
C,

so R[λ] is the radical of z[λ]TLn(q).

2. Using Lemma 3.2.29 and the fact that rad(zL
µTLnzL

µ(q)) is of order 2, imply
clearly that R[λ] is nilpotent of order 3.

3. To show that zL
µ is a minimal central idempotent modulo the radical, we

observe first that zL
µ is clearly idempotent and morever, that

• zL
µ commutes with zL

νTLzL
ν if µ = ν,

• if ν , µ are adjacent, then zL
µzL
νTLnzL

ν (q) is contained in the radical,
• If ν , µ are not adjacent, the space zL

µzL
νTLnzL

ν (q) is zero and
• if η , ν, then zL

µzL
νTLnzL

η (q) is zero or always contained in the radical.

In particular, zL
ν (q) commutes with z[λ](q) modulo the radical, thus zL

ν (q) is a
minimal central idempotent modulo the radical.

4. It is left to show, that z[λ](q) is minimal as an central idempotent in TLn(q).
By the previous part every central idempotent in z[λ]TLn(q) is a sum of some
zL
ν (q), ν ∈ [λ] and an element in R[λ]. However the reader may easily check,

that no such element is central, if it is not z[λ](q), by using that R[λ] is of order
3. �

Having the main result proven, we finish this section by showing that the action
defined in (2.24) is actually faithful for all q ∈ C×.

Writing down that action from (2.24) by using the morphism φ1 from (2.7)
implies that Ui acts from the right by

πq : TLn(q)op → End(V⊗n), Ui 7→ id⊗(i−1)
V ⊗T ⊗ id⊗(n−i+1)

V ,

where T ∈ End(V ⊗ V) is given by the rule

vi ⊗ v j 7→


vvi ⊗ v j − v j ⊗ vi, if i < j,
0, if i = j,
v−1vi ⊗ v j − v j ⊗ vi, if i > j.

Now we can prove the following theorem, following (GW93, Theorem 2.4):
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Theorem 3.2.31. The representation πq defined above of TLn(q) on V⊗n is faithful.

If q is not a 2lth root of unity for l = 2, . . . , n, opposed to our global assumption
of this section, the statement is just Proposition 2.3.10.

Proof. If p ∈ TLn is any idempotent evaluable at q, then p is also evaluable at
a neighborhood of q. If ξ is in a deleted neighborhood of q, then πξ is faithful,
thus πξ(p) , 0, which implies with constancy of rank, that πq(p) , 0, hence πq is
faithful on the maximal semisimple quotient of TLn(q).

If λ is non-critical, t a regular tableau of shape λ and n[t](v) the non-zero
nilpotent element in the two dimensional algebra p[t]TLn p[t](q), then the proof of
the first part of Lemma 3.2.27 shows, that there is an evaluable minimal idem-
potent f in TLN for some N > n, such that f n[t] f (q) is a non-zero multiple of
f (q). The representation πq commutes with the usual embedding TLn ⊂ TLN and
End(V⊗n) ⊂ End(V⊗N), so that πq( f ) , 0 implies πq(n[t]) , 0. But for for any non-
zero element in rad(TLn), the ideal generated by this element contains an element
of the form n[t]. In particular, πq is faithful on rad(TLn). �

Now the discussion of the minimal central idempotents modulo the radical as
it is presented in (GW93) is finished. Although some of the proofs of this sec-
tion were quite tiring, nevertheless we stress, that all statements not dealing with
modules were here shown diagramatically. In particular, the construction of a suf-
ficient number of evaluable idempotents, Proposition 3.2.26, did not use any non-
diagramatic statements.

However, while proving the statements of Section 3.2.1, one could observe
that elements implementing equivalences between path idempotents, seem to be
constructed after a certain schema. For two paths t and s of same shape, we saw that
the space psTLn pt is one dimensional, thus there exists a basis ps,t indexed by pairs
of tableaux t, s of same shape, such that ps,t ∈ psTLn pt. But it is also interesting to
know the coefficents of this basis, a good aproach would be to construct this basis
ps,t explicitly. This is done in the next section.
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Section 4

An upper triangular relation

Let pt and ps be two path idempotents in TLn such that t = si(s). If q is not a root
of unity, we saw in Proposition 3.2.10 that ps and pt are equivalent and moreover,
that the elements e, f implementing the equivalence are, up to multiplying with a
scalar, the elements psUi pt and ptUi ps. It is also clear, that ptTLn ps being one
dimensional is generated by ptUi ps. Now if moreover s j is admissible for s and
r = s j(s), then one would obtain that ptUi psU j pr and prU j psUi pt would imple-
ment, up to a scalar, an equivalence between r and t and secondly they would also
generate the spaces prTLn pt and ptTLn pr. This leads to the idea to construct ele-
ments pt,s ∈ ptTLn ps inductively and by choosing carefully the right coefficents,
they would implement equivalences between pt and ps. This is done in Section 4.1.
It is clear, since TLn decomposes into a sum of one dimensional subspaces ptTLn ps

for Shape(t) = Shape(s), that the elements pt,s form a basis, which will include the
path idempotents pt,t = pt. However, we can actually calculate the coefficents in-
volved to express pt,s in terms of another known basis, the cellular basis βt,s(see
also Remark 2.2.6) used for the usual cellular structure on TLn, defined in (GL96,
Example 1.4). An example of this calculation is given in Section 4.2 and the gen-
eral formula will be proven in Section 4.3. As a side result, we will be able to
express the path idempotents pt in terms of the cellular basis βt,s with more or less
explicit formulas, which is as far as we know a new formula.

The main results of this section are summarized by the following theorem (see
Definition 4.1.8, Proposition 4.1.10 and Theorem 4.3.18):

Theorem. There exists a basis of TLn of elements pt,s indexed by pairs of tableaux
t and s of same shape such that

1. pt,t equals the path idempotent pt,

2. the elements pt,s form a system of matrix units, i.e. pt,s ps,r = pt,r for all paths
t, s, r of same shape and

3. the basis pt,s is related by an upper triangular relation with respect to the
dominance order to the cellular basis βt,s of (GL96).

Moreover for u, v, t, s of same shape, the coefficent ct,s
u,v ∈ Std(n) of βu,v in pt,s =∑

uEt,vEs ct,s
u,vβt,s is described by (4.43).

We start by defining explicitly the elements pt,s.

Section 4.1 A new basis

The starting point is to define pt,s for adjacent paths t and s, actually they were
already introduced implicitly as the elements u and w in the proof of 3.2.10:
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Definition 4.1.1. Let s E t be two paths of same shape, such that si(s) = t and let
∅ → λ(1) → · · · → λ(i) be the maximal common subpath of s and t, see Figure 16.
Setting d = λ(i)

1 − λ(i)
2 , the elements pt,s and ps,t are defined by

ps,t := fs,t psUi pt and pt,s := ft,s ptUi ps, (4.1)

where fs,t =
[d+1]

[d] and ft,s =
[d+1]
[d+2] .

s t

λ

λ(i)

Figure 16: Paths s and t.

Remark 4.1.2. The proof of Proposition 3.2.10 justifies the choice of the coeffi-
cents ft,s, since it implies that ps,t pt,s = ps.

To construct elements pt,s inductively, we introduce the following notation:

Definition 4.1.3. Let r and t be two paths of same shape and si1 · · · sik ∈ S n be a
minimal expression, such that

1. (sik · · · si1)(r) = t and

2. rim...i1 := (sim . . . si1)(r) is always a standard tableau.

Then si1 · · · sik is called a (r, t)-regular expression.

The following lemma is only needed in a relativly simple special case in this
section, but it is also needed in Section 4.3.
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Lemma 4.1.4. If s11 · · · sik is a (r, t)-regular expression for two paths r and t, then

prUi1 · · ·Uik pt = prUi1 pri1
Ui2 · · · prik−1 ...i1

Uik pt. (4.2)

Proof. The first case to treat is the relativly easy case where k = 2, i.e. where
t = s jsi(r) = r ji. Applying (3.11) proves this case:

prUiU j pt = pr(pr + pri)UiU j(pri + pr ji)pr ji = prUi(pr + pri)(pri + pr ji)U j pr ji

= prUi priU j pt.

Now if k ≥ 3, then let Jd for d ≤ k be defined by

Jd := {( j1, . . . , jh) ∈ Zh; 1 ≤ j1 < · · · < jh ≤ d}.

This is the set of ordered tuples j of length at most d in {1, . . . , d}. For j ∈ Jd the
tableau r j and the element p j ∈ TLn are defined to be

r j := si jh
. . . si j1

(r) ∈ Tab(λ) and p j :=

pr j , r j is standard,
0, otherwise.

(4.3)

For example, if j = (1, . . . , k) ∈ Jk, then r j = rik ...i1 = t. Moreover, if d < k, and
j ∈ Jd ⊂ Jd+1, the tuple j1 ∈ Jd+1 is defined to be

j1 = ( j1, . . . , jd, d + 1), (4.4)

which implies that sid+1(r j) = r j1 and moreover, that

psid+1 (r j) = p j1 . (4.5)

It is clear, that if r j is standard but sid+1(r j) is not, then this means by using (3.7)
that p jUid+1 = 0. Therefore, with Lemma 3.1.18, (4.4) and (4.5) the equation(

p j + p j1
)

Uid+1 = Uid+1

(
p j + p j1

)
(4.6)

holds. Since Jd+1 is the disjoint union of Jd and { j1 : j ∈ Jd}, (4.6) implies∑
j∈Jd+1

p jUid+1 =
∑
j∈Jd

(p j + p j1)Uid+1 =
∑
j∈Jd

Uid+1(p j + p j1) = Uid+1

∑
j∈Jd+1

p j

i.e. for d < k, we obtain ∑
j∈Jd

p jUid = Uid

∑
j∈Jd

p j. (4.7)

We now show for d ≤ k the following equation by using induction:

prUi1 . . .Uid = prUi1 . . .Uid

∑
j∈Jd

p j. (4.8)
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Proof of the equation (4.8). The equation is clear for d = 1, since then
∑

j∈J1 p j =

pri1
+ pr, so (4.8) for d = 1 follows from Lemma 3.1.18. Now if d > 1, then

Jd−1 ⊂ Jd and the fact that the p f are idempotents imply together that∑
j∈Jd−1

p j
∑
l∈Jd

pl =
∑

j∈Jd−1

p j. (4.9)

Then induction hypothesis for (4.8) and substituting (4.7) and (4.9) yield

prUi1 . . .Uid = prUi1 . . .Uid−1

∑
j∈Jd−1

p jUid = prUi1 . . .Uid−1

∑
j∈Jd−1

p j
∑
l∈Jd

plUid

= prUi1 . . .Uid−1

∑
j∈Jd−1

p jUid

∑
l∈Jd

pl = prUi1 . . .Uid−1Uid

∑
l∈Jd

pl. �

Applying induction hypothesis for (4.2) and using (4.8) allow us to deduce

prUi1 . . .Uk prik ...i1
= prUi1 . . .Uk−1

∑
j∈Jk−1

p jUk(prik−1 ...i1
+ prik ...i1

)prik ...i1

= prUi1 . . .Uk−1

∑
j∈Jk−1

p j(prik−1 ...i1
+ prik ...i1

)Uk prik ...i1

= prUi1 . . .Uk−1 prik−1 ...i1
Uk prik ...i1

= prUi1 pri1
. . .Uik−1 prik−1 ...i1

Uik prik ...i1
,

where we used
∑

j∈Jk−1 p j(prik−1 ...i1
+ prik ...i1

) = prik−1 ...i1
. �

These (r, t)-regular expressions are actually braid-avoiding, i.e. they do not
contain subwords of the form sisi±1si ∈ S n. This will be used later.

Lemma 4.1.5. Any (r, t)-regular expression si1 · · · sik is braid-avoiding.

Proof. There are eight possibilities for a tableau where to place the numbers i, i +

1, i + 2 indicated by Figure 17. We leave it to the reader to check that sisi+1si is not

Figure 17: Eight possibilities.

admissible in all cases. The same works for si+1sisi+1. �

Remark 4.1.6. 1. It is known, that two minimal braid-avoiding expressions in
S n can be obtained from each other by only appling the relation

sis j = s jsi for |i − j| > 1. (4.10)

This is for example shown in (Ste96, Proposition 2.1). However, if r is a
standard tableau, such that s j(r) and sis j(r) are still standard, i.e. such that
s j and sis j are admissible for the path r, then also si and s jsi are admissible
for r. In particular, the set of (r, t)-regular expressions is preserved under
(4.10).
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2. A (r, t)-regular expression si1 · · · sik is also minimal as an expression in S n.

Since (4.10) corresponds to the relation (2.6) in TLn, we obtain the following
consequence:

Corollary 4.1.7. For two (r, t)-regular expressions si1 · · · sik = s j1 · · · s jk

pr,ri1
pri1 ,ri2i1

· · · prik−1 ...i1 ,rik ...i1
= pr,r j1

pr j1 ,r j2 j1
· · · pr jk−1 ... j1 ,r jk ... j1

(4.11)

holds, where pr jh ... j1 ,r jh+1 ... j1
is defined for r jh... j1 and r jh+1... j1 in Definition 4.1.1.

Proof. We consider first the special case, where k = 2 and t = sis j(r) = s jsi(r) for
two admissible s j, si, such that |i− j| > 1. Let w and s be defined by w = s j(t) = si(r)
and s = si(t) = s j(r); the situation is depicted in Figure 18. This implies

.

r w

λ

λ( j)

λ(i)

s t

λ

λ(i)

λ( j)

Figure 18: Paths r and t and two different (r, t)-regular expressions.

fr,w = fs,t and fr,s = fw,t

and moreover,

fr,w fw,t = fs,t fr,s = fr,s fs,t,

thus we obtain

pr,w pw,t = fr,w fw,t prUi pwU j pt = fr,s fs,t prUiU j pt = fr,s fs,t prU jUi pt

= fr,s fs,t prU j psUi pt = pr,s ps,t. (4.12)
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Now the general case follows directly from the special case, i.e. from (4.12), since
by Lemma 4.1.5 every (r, t)-regular expression is braid-avoiding and therefore two
(r, t)-regular expressions can be obtained from each other by applying only the
relation (4.10). �

By using Corollary 4.1.7, the following definition is well-defined:

Definition 4.1.8. Let r and t be two paths ending in λ ∈ Par2(n). Let si1 · · · sik be a
(r, t)-regular expression. If r = t, then we define pr,r to be the path idempotent pr.
If r , t, then we define pr,t by

pr,t = pr,rik ...i1
= fr,t prUi1 pri1

U2 · · · prik−1 ...i1
Uik prik ...i1

,

where we set fr,t = fr,ri1
· · · frik−1 ...i1 ,rik ...i1

.

As a first property, Definition 4.1.8 and Remark 4.1.2 have the following con-
sequences:

Corollary 4.1.9. 1. For two paths s, t of same shape, ps,t pt,s = ps holds.

2. The set of elements pt,s for t, s ∈ Std(n) of same shape is a basis of TLn.

Proof. Remark 4.1.2 implies the first statement if t and s are adjacent, which im-
plies with the inductive construction in Definition 4.1.8 the first statement for all
t and s of same shape. Now to prove the second statement, the first important in-
formation is that pt,s is non-zero for all paths of same shape, since ps = ps,t pt,s is
non-zero. Therefore, if we had a linear relation of the form∑

t,s∈Std(n)
Shape(t)=Shape(s)

ct,s pt,s = 0,

then multiplying from the left by pτ and from the right by pσ would imply that
cτ,σpτ,σ = 0, hence cτ,σ = 0 for all τ, σ ∈ Std(n) of same shape. In particular
the elements pt,s are linearly independant. Moreover, knowing that the elements pt

form a complete set of idempotents, TLn decomposes as

TLn =
⊕

t,s∈Std(n)

ptTLn ps =
⊕

t,s∈Std(n)
Shape(t)=Shape(s)

ptTLn ps,

where we used Corollary 3.1.26 for the last equation. But since pt,s ∈ ptTLn ps,
which is one dimensional by Corollary 3.2.11, this implies that the elements pt,s

generate TLn as a vector space, thus they form a basis. �

The equation pt,s ps,t = pt actually has a stronger consequence, which means
that the basis pt,s is a set of matrix units:

Proposition 4.1.10. For three paths w, t and r of same shape, pw,t pt,r = pw,r holds.
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Proof. Let s = si1 · · · sik be a (w, t)-regular expression and s′ = sik+1 · · · sik+h a (t, r)-
regular expression. Let m ≤ k + h be the length of a (w, r)-regular expression. We
proceed by induction over k + h − m.

1. If m = k + h, we see that ss′ must be a (w, r)-regular expression: It satisfies

(sik+h · · · si1)(w) = r and (4.13)

(sim · · · si1)(w) is standard for all 1 ≤ m ≤ k + h. (4.14)

Since k + h = m, ss′ must also be minimal with that property.

2. Assume that m < k + h. Although ss′ is not minimal, it satisfies (4.13) and
(4.14). By the deletion condition (cf. (Hum90, Section 1.7)), there exist
1 ≤ m < m′ ≤ k + h such that

sim+1 · · · sim′ = sim · · · sim′−1 . (4.15)

It is clear that m,m′ ≤ k and m,m′ > k are impossible, since the expressions
for s and s′ are also minimal expressions in S n (see Remark 4.1.6), thus
m ≤ k < m′. Without loss of generality, we can assume that m ≤ k is
maximal and m′ > k is minimal. But then (4.15) describes also a (t1, t2)-
regular expression, where

t1 = (sim · · · si1(w) and t2 = (sim′ · · · si1)(w).

We use the notation wid ···i1 for sid · · · si1(w). Since pt1,t2 is independant of the
choice of a (t1, t2)-regular expression, (4.15) implies

pt1,t2 = pwim ...i1 ,wim+1 ...i1
· · · pwim′−1 ...i1

,wim′ ...i1

= pwim ...i1 ,wimim ...i1
· · · pwim′−2 ...imim ...i1 ,wim′−1 ...imim ...i1

= pwim ...i1 ,wim−1 ...i1
· · · pwim′−2 ...îm ...i1

,wim′−1 ...îm ...i1
,

where îm means that im is omitted. But this implies

pw,t pt,r =
(
pw,wi1

· · · pwim−1 ...i1 ,wim ...i1

) (
pwim ...i1 ,wim+1 ...i1

· · · pwim′−1 ...i1
,wim′ ...i1

)
·
(
pwim′ ...i1 ,wim′+1 ...i1

· · · pwik+h−1 ...i1 ,wik+h ...i1

)
=

pw,wi1
· · · pwim−1 ...i1 ,wim ...i1

pwim ...i1 ,wim−1 ...i1︸                             ︷︷                             ︸
pwim−1 ...i1

· · · pwim′−2 ...îm ...i1
,wim′−1 ...îm ...i1


·
(
pwim′ ...i1 ,wim′+1 ...i1

· · · pwik+h−1 ...i1 ,wik+h ...i1

)
= pw,wi1

· · · pwik+h−1 ...îm′ ...îm ...i1
,wik+h ...îm′ ...îm ...i1

, (4.16)
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where we also used

si1 · · · sik+h = si1 · · · ŝim · · · ŝim′ · · · sih+k

for the last equation. So, (4.16) implies that si1 · · · ŝim · · · ŝim′ · · · sih+k satisfies
(4.13) and (4.14) but is of length h + k− 2. Using induction hypothesis gives
the desired result. �

A good idea would be now to calculate some ps,t to get an impression how
the look like. Therefore we are going to express the ps,t in terms of an “easy”
diagramatic basis, namely that which has been defined in Section 2.2, see Defini-
tion 2.2.4. In Section 4.2 this is exemplarily done in the case n = 4.

Section 4.2 The case n = 4

We woul like to find out how {pt,s, t, s ∈ Std(λ), λ ∈ Par2(n) is related to the
ceullular basis of TLn consisting of arc diagrams. For n = 4 the branching graph
for the algebras TL1 ⊂ · · · ⊂ TL4 is indicated in the first picture of Figure 19.

s1 s2

s3

s4

s5s5

Figure 19: The branching graph for TL4 with the paths t ∈ Std(4).
.

We have three partitions of 4, namely the partitions λ = (4), µ = (3, 1) and
ν = (2, 2) with their corresponding tableaux s1 ∈ Std(λ), s2, s3, s4 ∈ Std(µ) and
s5, s6 ∈ Std(ν). The transition matrix between the basis

{p11, p22, p23, p24, p32, p33, p34, p42, p43, p44, p55, p56, p65, p66}

ant the basis

{β11, β22, β23, β24, β32, β33, β34, p42, β43, β44, β55, β56, β65, β66}

can be obtained by using Definition 3.1.7 and Definition 4.1.8. Doing so one ob-
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tains the following matrix A:

A =



1 − [3]
[4]

[2]
[4] − 1

[4]
[2]
[4] − [2]2

[4]
[2]
[4] − 1

[4]
[2]
[4] − [3]

[4]
[2]

[3][4]
1−[3]
[3][4]

1−[3]
[3][4]

[2][3]+[2]
[3][4]

0 [3]
[4] − [2]

[4]
1

[4] − [2]
[4]

[2]2
[3][4] − [2]

[3][4]
1

[4] − [2]
[3][4]

1
[3][4] − [2]

[3][4]
[3]−1
[3][4]

[3]−1
[3][4] − [2][3]+[2]

[3][4]

0 0 [2]
[4] − 1

[4] 0 − [2]2
[3][4]

[2]
[3][4] 0 [2]

[3][4] − 1
[3][4]

[2]
[3][4] − 1

[3][4] − [2]2
[4]

[2]
[4]

0 0 0 1
[4] 0 0 − [2]

[3][4] 0 0 1
[3][4] 0 1

[3][4] 0 − 2
[3][4]

0 0 0 0 1 − [2]
[3]

1
[3]

1
[2]

1
[3] − 1

[2][3]
1

[3] −[2] − 1
[2][3] 1

0 0 0 0 0 [2]
[3] − 1

[3] 0 − 1
[3]

1
[2][3] − 1

[3]
1

[2][3]
1

[2][3] − 1
[2]2[3]

0 0 0 0 0 0 1
[3] 0 0 − 1

[2]3 0 − 1
[2][3] 0 1

[2]2[3]

0 0 0 0 0 0 0 [3]
[2] −1 1

[2] 0 0 1
[2] −1

0 0 0 0 0 0 0 0 1 − 1
[2] 0 0 − 1

[2]
1

[2]2

0 0 0 0 0 0 0 0 0 1
[2] 0 0 0 − 1

[2]2

0 0 0 0 0 0 0 0 0 0 1
[3] − 1

[2][3] − 1
[2][3]

1
[2]2[3]

0 0 0 0 0 0 0 0 0 0 0 1
[2][3] 0 − 1

[2]2[3]

0 0 0 0 0 0 0 0 0 0 0 0 1
[2] − 1

[2]2

0 0 0 0 0 0 0 0 0 0 0 0 0 1
[2]2


(4.17)

Therefore our hope is to show, that the set

{ps,t, s, t ∈ Std(λ), λ ∈ Par2(n)}

is related via an upper triangular relation to the cellular basis

{βs,t, s, t ∈ Std(λ), λ ∈ Par2(n)}.

This will be done in Section 4.3.

Section 4.3 Relating with a cellular basis

Our first goal is to express the path idempotents pt in terms of the cellular basis
βt,s. The coefficents involved will depend on the possibilities to construct the path
t by “replacing” ε j(t) = 1 by −1. To do so, we first need to find the right indices j,
where this will be done.

Definition 4.3.1. Let t = ((1) = λ(1) → · · · → λ(n)) be a path ending in λ(n) = λ

with d = λ1 − λ2. For h = 1, . . . , d the path rt
h is defined to be the minimal subpath

rh = rt
h = λ(1) → · · · → λ( jh), (4.18)

such that λ(k)
1 − λ(k)

2 ≥ h for all k ≥ jh.

Remark 4.3.2. 1. By the choice of rh we see that λ( jh) = (λ( jh−1)
1 + 1, λ( jh−1)

2 ).
Moreover, rh exists for h = 1, . . . , d since λ1−λ2 ≥ h. In the branching graph,
this means that after the endpoint of rh the path t is weakly to the right of the
line defined by all partitions µ with µ1 − µ2 = h, see also Figure 20.
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rh

rh+1

h − 1 h h + 1

t

rh

rh+1

h − 1

t#h(t)

Figure 20: Paths rh, rh+1 and #h(t).

2. The path rk is a subpath of rh if and only if k ≤ h and moreover the number
j1, . . . , jd are exactly the labels of the vertical lines on the top edge in the
diagram βt,· (see Definition 2.2.4).

3. Clearly the subpath rt
h satisfies ε jh(rh) = 1 = ε jh(t).

The index jh will be the right place to replace ε jh = 1 by −1:

Definition 4.3.3. For d ≥ 2 and h ∈ {1, . . . , d−1} the path #h(t) ∈ Std(λ1−1, λ2+1)
is defined by:

εi(#h(t)) =

εi(t), i , jh+1,

−1, i = jh+1.
(4.19)

It is clear that #h(t) / t for all h ∈ {1, . . . , d − 1}. An example of #h(t) with sub-
paths rh and rh+1 is given in the second picture of Figure 20. When pr is described
in the basis βt,s, the coefficent of βt,s will depend on the ways to construct t and s
out of the maximal path t(n) ∈ Std(n). However, to prove the later statements, we
will need a slight generalization of the previous definition:

Definition 4.3.4. For λ ∈ Par2(n) with d = λ1 − λ2 and µ ∈ Par2(d), the partition
λ#µ is said to be the partition (λ1 − µ2, λ2 + µ2). Moreover, for t ∈ Std(λ) and
r ∈ Std(µ), the tableau t#r ∈ Std(λ#µ) is defined as follows:

εi(t#r) =

εi(t), if i , jh ∀h = 1, . . . , d,
εh(r), if i = jh.

(4.20)
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Remark 4.3.5. 1. If r has only one number k in the second row corresponding
to a horizontal line (h, k) in βr,·, then we obtain that t#r = #h(r). This was the
example in Figure 20.

2. µ1 + µ2 = λ1 − λ2 implies that

(λ1 − µ2) − (λ2 + µ2) = λ1 − λ2 − 2µ2 = µ1 + µ2 − 2µ2 = µ1 − µ2 ≥ 0,

thus λ#µ is a well-defined two-row partition of n.

3. It is clear, that if r , t(d), i.e. if µ2 , 0, then we obtain that t#r / t.

The reason why to define this composition of tableaux is the following quite
obvious fact, which is clear by the construction:

Lemma 4.3.6. If t ∈ Std(λ) and r ∈ Std(µ) where µ ∈ Par2(λ1 − λ2), then

βt,· · βr,· = βt#r,· . (4.21)

The following lemma will be needed to prove the coefficent formula: It will be
proven by using induction and appling Definition 3.1.1.

Lemma 4.3.7. If x ∈ TLn,d, then

x

d

d − 1

=

d∑
j=1

(−1)d− j [ j]
[d]

x

jd − 1

j

Proof. Since pd = pd · (pd−1 t 1), it suffices to show the equation:

d =

d∑
j=1

(−1)d− j [ j]
[d] d − 1

j

(4.22)

Clearly (4.22) holds for d = 1, therefore d is assumed to be greater than 1. Then
Definition 3.1.1 and the induction hypothesis imply together that

d = d − 1 − [d − 1]
[d]

d − 1

d − 1

= d − 1 − [d − 1]
[d]

d−1∑
j=1

(−1)d−1− j [ j]
[d − 1]

d − 2

d − 1

j

= d − 1 +

d−1∑
j=1

(−1)d− j [ j]
[d] d − 1

j

=

d∑
j=1

(−1)d− j [ j]
[d] d − 1

j

. �
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We actually need a certain consequence of the previous lemma as well. There-
fore, if r is a path, let I−r be the set of indices i such that εi(r) = −1, i.e. I−r consists
of the numbers in the second row of the tableau r. Let #−1(r) be the set of pairs
( j, σ) such that j ∈ I−r and # jσ = r. Then Lemma 4.3.6 has the following conse-
quence:

Corollary 4.3.8. If x =
∑
σ∈Std(λ) γσβσ,· is an element of TLn,d where d = λ1 − λ2,

then

d∑
j=1

(−1)d− j [ j]
[d]

x

j

j

=
∑

w∈Std((λ1,λ2+1))

γwβw,·

holds, where

γw =
∑

( j,σ+)∈#−1(w)

γσ(−1)d+ j [ j]
[d]

. (4.23)

Proof. If x =
∑
σ∈Std(λ) γσβσ,·, then

x t 1 =
∑

σ∈Std(λ)

γσβσ+,· ∈ TLn+1,d+1. (4.24)

Now for j = 1, . . . , d let ξ j ∈ Std((d + 1, 1)) be the tableau of shape (d + 1, 1) with
j + 1 in the second row, so that βξ j,· is given by

βξ j,· =

j

.

By using Lemma 4.3.6 and the first part of Remark 4.3.5, the equation

βσ,· · βξ j,· = β# j(σ) (4.25)

holds, and therefore (4.24) and (4.25) imply together

d∑
j=1

(−1)d− j [ j]
[d]

x

j

j

=

d∑
j=1

(−1)d− j [ j]
[d]

∑
σ∈Std(λ)

γσβσ+,·βξ j,·

=

d∑
j=1

(−1)d− j [ j]
[d]

∑
σ∈Std(λ)

γσβ# j(σ+),·,

which implies (4.23). �

Now having shown a first technical lemma, it is time to define the coefficents
involved to express pr in terms of basis elements βt,s:
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r(0)r(1)r(2)r(3)r(4)r r(0)r(1)r(2)r(3)r(4)r

Figure 21: A path r and the sequence r(0), r(1), r(2), r(3), r(4), r(5) = r.

Definition 4.3.9. Let w ∈ Std(λ) be a tableau of shape λ ∈ Par2(n).

1. Jw is defined as the set of sequences (w(0), . . . ,w(λ2)) of tableaux such that

(a) w(k+1) = #hw(k) for some h and

(b) w(λ2) = w and w(0) = t(n).

2. A sequence w ∈ Jw is said to dominate another sequence v ∈ Jv, denoted by
w E v′, if and only if w(k) E v(k) for all 1 ≤ k ≤ λ2. If Jr

r ⊂ Jr denotes the
singleton containing the unique minimal sequence r ∈ Jr with respect to E,
then the set Jr

w is defined to be the subset of w ∈ Jw such that w E r ∈ Jr
r .

3. For a sequence w and two successive w(k−1) and w(k) let µ be the shape of
their maximal common subpath. Then dk

w is defined by dk
w = µ1 − µ2.

4. Finally the coefficient Cr
w is defined to be

Cr
w =

∑
w∈Jr

w

Cw with Cw =

d∏
k=1

(−1)dk
w[dk

w]. (4.26)

These coefficents Cr
w will be the key ingredient to describe pr in terms of βt,s.

Example 4.3.10.

1. An example of a path r and the only element r ∈ Jr
r is given in Figure 21.

2. In this particular example, the maximal common subpath of r(0) and r(1) is
of shape (2, 0). In particular d1

r = 2. Similar one sees d2
r = 4, d3

r = 3, d4
r = 5

and d5
r = 4, which implies

Cr = (−1)2[2] · (−1)4[4] · (−1)3[3] · (−1)5[5] · (−1)4[4] = [2][3][4]2[5].
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Remark 4.3.11. 1. A sequence of tableaux w ∈ Jw could also be expressed
by a sequence of indices i1, . . . , ik such that #ik . . . #i1 = w(k). In particular,
r ∈ Jr

r corresponds to the unique sequence j1, . . . , jd such that j1 < · · · < jd.

2. Clearly a sequence w is ordered with respect to the dominance order: (n) =

w(0) . · · · . w(k) = w.

3. Since Jr
r consists only of the element r ∈ Jr, Cr

r is given by

Cr
r = Cr =

d∏
k=1

(−1)dk
r [dk

r].

If pr is a path idempotent expressed by pd = fr xpd x̃, then x can assumed to
have through-degree d. In particular, if x is written in terms of βw,·, we can write
down a first formula to describe the coefficents of the βw,·.

Proposition 4.3.12. Let r ∈ Std(λ) and let pr = fr xpd x̃, such that x is of through-
degree d = λ1 − λ2. Then

x =
∑

w∈Std(λ)
wEr

γx
wβw,· with γx

w =
Cr

w

Cr
r

(4.27)

holds, where Cr
w is defined in (4.26).

Proof. It is easy to see that βσ,·, σ ∈ Std(λ) is a basis of TLn,d, therefore, since x
has through-degree d, x can be expressed by

x =
∑

σ∈Std(λ)

γx
σβσ,·. (4.28)

Now there are two cases:

1. If εn(r) = −, i.e. if r = r′−, then

pr′ = fr′
y

d + 1
ỹ

and pr =
[d]

[d + 1]
fr′

x
d
x̃

=
[d]

[d + 1]
fr′

y
d + 1

d

d + 1
ỹ

. (4.29)

Lemma 4.3.7 states that

y

d + 1

d

=

d+1∑
j=1

(−1)d+1− j [ j]
[d + 1]

y

jd

j

,
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which implies with (4.29)

x =

d+1∑
j=1

(−1)d+1− j [ j]
[d + 1]

y

j

j

(4.30)

Howoever, by induction hypothesis y satisfies

y =
∑

w∈Std((λ1 ,λ2))
wEr

γ
y
wβw,·,

γ
y
w = C−1

r′
∑

w∈Jr′
w

Cw and Cw =

d+1∏
k=1

(−1)dk
w[dk

w]. (4.31)

which implies with (4.28) and Corollary 4.3.8 that

x =
∑

σ∈Std((λ1,λ2+1))

γx
σβσ,· and γx

σ =
∑

( j,w+)∈#−1(σ)

γ
y
w(−1)d+1+ j [ j]

[d + 1]
. (4.32)

Since [d + 1] = dd
r implies (−1)d+1[d + 1]Cr′ = Cr and therefore

(−1)d+1[d + 1]Cr′
r′ = Cr

r , (4.33)

the previous equations (4.31) and (4.33) yield together

γ
y
w(−1)d+1+ j [ j]

[d + 1]
= (−1) j [ j]

Cr
r

∑
w∈Jr′

w

d+1∏
k=1

(−1)dk
w[dk

w]

= (Cr
r)−1

∑
w∈Jr′

w

(−1) j[ j]
d+1∏
k=1

(−1)dk
w[dk

w]

= (Cr
r)−1

∑
v∈Jr

σ

dd
v = j

Cv, (4.34)

where (4.26) was used for the last equality. Since ( j,w+) ∈ #−1(σ) if and
only if for every sequence w ∈ Jr′

w , we can add # j(w(d)+) to obtain a sequence
ŵ ∈ Jr

σ, and since in this case dd+1
ŵ = [ j] holds, (4.32) and (4.34) together

imply that

γx
σ =

∑
( j,w+)∈#−1(σ)

γ
y
w(−1)d+1+ j [ j]

[d + 1]
=

∑
( j,w+)∈#−1(σ)

wEr′

(Cr
r)−1

∑
v∈Jr

σ

dd
v = j

Cv = (Cr
r)−1

∑
v∈Jσ

Cv.

(4.35)
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Moreover, by induction hypothesis we can assume that γy
w = 0, whenever

w 5 r′. Therefore, since σ 5 r implies for ( j,w+) ∈ #−1(σ) that w 5 r′, the
implication

σ 5 r ⇒ γx
σ = 0

holds. In particular, (4.27) follows in this case from (4.35) and (??)

2. On the other hand, ifεn(r) = +1, i.e. if r = r′+, then it follows that

pr′ = fr′ypd−1ỹ such that fr = fr′ and x = y t 1.

Moreover, induction hypothesis assures y =
∑

w∈Std(µ)
wEr′

γ
y
wβw,·, where µ = (λ1 −

1, λ2), which implies

x = y t 1 =
∑

w∈Std(µ)
wEr′

γ
y
wβw+,·,

hence γx
σ = γ

y
σ′ . Therefore, since induction hypothesis ensures γy

σ′ = 0 for
σ′ 5 r′, which implies γx

σ = 0 for σ 5 r, this also shows (4.27) in this
case. �

Now it is time to show the first result of this section, namely the coefficent
formula for pr for βt,s where t and s are of same shape as r. To do so, we fix some
more notation: For λ ∈ Par2(n), M/λ will denote the subspace of TLn spanned by
βu,v such that Shape(u) = Shape(v) / λ; M/λ is a two-sided ideal in TLn.

Corollary 4.3.13. If r is a path ending in λ ∈ Par2(n), then

pr = pr,r ≡
∑

(u,w)E(r,r)

cr
u,wβu,w (mod M/λ),

where the sum runs over all pairs (u,w) such that u E r and w E r. Moreover

cr
u,w = fr

Cr
uCr

w

Cr
rCr

r
(4.36)

holds, where Cr
u is defined in (4.26) and fr in Definition 3.1.5.

Proof. If pr = fr xpd x̃, then x can assumed to have through-degree d, so it is pos-
sible to apply Proposition 4.3.12, which yields

x =
∑

w∈Std(λ)
wEr

γx
wβw,· with γx

w =
Cr

w

Cr
r
. (4.37)

Furthermore, pd can be expressed by

pd =
∑

τ,π∈Std(d)
Shape(τ)=Shape(π)

γd
τ,πβτ,·β·,π, (4.38)
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since βτ,π = βτ,·β·,π is a basis of TLd. Applying (4.37), (4.38) and Lemma 4.3.6
now implies

pr = fr xpd x̃ = fr

 ∑
σ∈Std(λ)

γx
σβσ,·




∑
τ,π∈Std(d)

Shape(τ)=Shape(π)

γd
τ,πβτ,·β·,π


 ∑
ξ∈Std(λ)

γx
σβ·,ξ


= fr

∑
σ,τ,π,ξ

γx
σγ

d
τ,πγ

x
ξβσ,·βτ,·β·,πβ·,ξ = fr

∑
σ,τ,π,ξ

γx
σγ

d
τ,πγ

x
ξβσ#τ,ξ#π., (4.39)

where the last two sums range over all σ, ξ ∈ Std(λ) and τ, π ∈ Std(d), such that τ
and π are of same shape. Since Shape(σ#τ) / Shape(σ) = λ for τ , t(d) and since
the coefficent γt(d),t(d) of 1 in pr is 1, (4.39) actually says that

cr
σ,ξ = frγx

σγ
x
ξ . (4.40)

But then the result follows from (4.39), (4.40) and (4.37). �

We obtain an important consequence:

Corollary 4.3.14. If r is a path, then the coefficent of βr,r in pr is given by cr
r,r = fr,

where fr is defined in Definition 3.1.5.

Example 4.3.15. We reconsider the example of Section 4.2.

1. We want to use (4.26) to calculate the coefficent γs2,s2
s3,s3 = γ22

33 of βs3,s3 = β33
in ps2,s2 = p22. The set Js2 = Js2

s2 has only one element, namely the sequence
s2 = (s1, s2), which implies by applying (4.26) that

C2
2 = Cs2

s2
= Cs2 = (−1)3[3], (4.41)

since the maximal common subpath of s1 and s2 is of shape (3, 0). The set
Js3 also consists only of one element, namely the sequence s3 = (s1, s3) and
moreover, s3 / s2 since s3 / s2, which lets us obtain

C2
3 = Cs2

s3
= (−1)2[2], (4.42)

since the maximal common subpath is of shape (2, 0).

Now applying (4.36) yields

γ22
33 = fs2

C2
3C2

3

C2
2C2

2

=
[3]
[4]

[2]2

[3]2 =
[2]2

[3][4]
,

but this is the calculated entry corresponding to β3,3 in p2 given in (4.17).

2. Also the set Js4
s4 has only one element, namely the sequence s4 = (s1, s4)

and since the maximal common subpath of s4 and s1 is of shape (1, 0), the
equation

C2
4 = Cs2

s4
= (−1)[1] = −1
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holds. Furthermore, we see that

γ22
44 = fs2

C2
4C2

4

C2
2C2

2

=
[3]
[4]

1
[3]2 =

1
[3][4]

,

which is the coefficent of β44 in p22 calculated in (4.17).

3. The previous two examples imply that

γ22
43 = fs2

C2
4C2

3

C2
2C2

2

=
[3]
[4]

(−1)[2]
[3]2 = − [2]

[3][4]
.

But this is again the coefficent of β4,3 in p2.

4. On the other hand Js5 = J5 has two elements, namely the sequences s51 =

(s1, s2, s5) and s52 = (s1, s3, s5), however, s52 / s51 since s3 / s2, thus

C5
5 = Cs5

s5 = (−1)2[2](−1)[1] = [2],

since the maximal common subpath of s3 and s1 is of shape (2, 0) and that of
s3 and s5 is of shape (2, 1). Also J6 = Js6 consists of two elements, namely
the sequences s61 = (s1, s2s6) and s62 = (s1, s4, s6), but s61 5 s51 since
s2 5 s3. In particular, C5

6 consists only of the element s62 and therefore C5
6

is given by

C5
6 = Cs5

s6 = (−1)(−1) = 1,

since the maximal common subpath of s1 and s4 is of shape (1, 0) and the
maximal common subpath of s4 and s6 is of shape (2, 1). So together we
obtain

γ55
66 = γs5,s5

s6,s6 = fs5

C5
6C5

6

C5
5C5

5

=
1

[3]
1

[2]2 =
1

[2]2[3]
,

which is the coefficent of β66 in p55 given in (4.17).

Remark 4.3.16. Note that the above example is not a particular good example,
since n = 4 does not include non-comparible paths of same shape and moreover all
sets Jt

s consist only of one element. However already for n = 5, we obtain 42 basis
elements βt,s, which is tedious to calcalute in detail...

The next step is to prove, that also the elements ps,t satisfy an relation of the
form

ps,t ≡
∑

(u,v)E(s,t)

cs,t
u,vβu,v (mod M/λ),

where s, t ∈ Std(λ). This is now quite easy by exploiting the properties of the path
idempotents. We fix some more notation:
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Definition 4.3.17. . If s, t are two paths of same shape such that s = si(t), then the
coefficent gs,t is defined by

gs,t =

 fs,t, if s / t,
ft,s, if s . t.

Inductively, for two arbitrary paths r and t of same shape and an (r, t)-regular
expression sii . . . sik , the coefficent gr,t is defined to be

gr,t = gr,ri1
gri1 ,ri2i1

· · · grik−1 ...i1 ,rik ...i1
.

A priori the coefficent gr,t depends on the choice of the (r, t)-regular expression.
But the following theorem, proving a coefficent formula for pt,s, implicitly also
shows that gr,t is independant of this choice.

Theorem 4.3.18. If r, t ∈ Std(λ) for λ ∈ Par2(n), then

pr,t ≡
∑

(u,w)E(r,t)

cr,t
u,wβu,w (mod M/λ).

and moreover for u,w ∈ Std(λ), the coefficent cr,t
u,w is given by

cr,t
u,w = frgr,t

Cr
uCt

v

Cr
rCt

t
, (4.43)

where gr,t is defined in Definition 4.3.17 and Cr
u in (4.26).

Proof. Let si1 · · · sik be a (s, t)-regular expression. To shorten formulas, we will
abbreviate the path ri j...i1 , if it arises as an index, by the symbol ( j). With this
notation in mind, we also write

p( j) = f( j)x( j) pd x̃( j) and pr = p(0) = x(0) pd x̃(0).

By using Definition 4.1.8, pr,t is expressable by

pr,t = f(0),(k) p(0)

k∏
j=1

Ui j p( j) = f(0),(k) f(0)x(0) pd x̃(0)

k∏
j=1

f( j)Ui j x( j) pd x̃( j)

= f(0),(k) f(0)x(0) pd x̃(0)

k−1∏
j=1

f( j)Ui j x( j) pd x̃( j)

 f(k)Uik x(k) pd x̃(k)

= f(0),(k) f(0)x(0) pdyk pd x̃(k), (4.44)

where

yk = x̃(0)

k−1∏
j=1

f( j)Ui j x( j) pd x̃( j)

 f(k)Uik x(k)

is an element of TLd. In particular the statement of the theorem follows then by
(4.27), (4.44) and the following equation

f(0),(k) f(0)x(0) pdyk pd x̃(k) = g(0),(k) f(0)x(0) pd x̃(k) (4.45)
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Proof of of the equation (4.45). If k = 1, i.e. if r = si1 t and r / t, then an easy
diagramatic argument, which was done similarly in Section 3, for example in the
proof of Proposition 3.2.10, shows that

f(1) pd x̃(0)Uix(1) pd = pd. (4.46)

But this implies that

f(0),(1) f(0)x(0) pdy1 pd x̃(1) = f(0),(1) f(0)x(0) pd x̃(0) f(1)Ui1 x(1) pd x̃(1)

= f(0),(1) f(0)x(0) pd x̃(1) = g(0),(1) f(0)x(0) pd x̃(1). (4.47)

If r . t, then similarly to (4.46), one can show that

f(0) pd x̃(0)Ui1 x(1) pd = pd,

implying

f(0),(1) f(0)x(0) pdy1 pd x̃(1) = f(0),(1) f(0)x(0) pd x̃(0) f(1)Ui1 x(1) pd x̃(1)

= f(0),(1) f(1)x(0) pd x̃(1) = f(1),(0) f(0)x(0) pd x̃(1)

= g(0),(1) f(0)x(0) pd x̃(1). (4.48)

Now (4.47) and (4.48) cover the case k = 1.
On the other hand, if k > 1, then applying (4.45) for yk−1 and for the case k = 1

yields

f(0),(k) f(0)x(0) pdyk pd x̃(k) = f(k−1),(k) f(0),(k−1) f(0)x(0) pdyk−1 pd x̃(k−1) f(k)Uik x(k) pd x̃(k)

= f(k−1),(k)g(0),(k−1) f(0)x(0) pd x̃(k−1) f(k)Uik x(k) pd x̃(k)

= g(k−1),(k)g(0),(k−1) f(0)x(0) pd x̃(k) = g(0),(k) f(0)x(0) pd x̃(k).

Thus we have shown (4.45). ��

The previous result generalizes Corollary 4.3.13. We stress the following im-
plicit statement:

Corollary 4.3.19. The cellular basis βt,s and the basis pt,s are in an upper trian-
gular relation with respect to the dominance order.

Example 4.3.20. We finish by discussing the example in Section 4.2. By Defini-
tion 4.3.17 the coefficent g42 for the paths st and s2 of Figure 19 is given by

f3,4 f2,3 =
[3]
[2]

[2]
1

= [3].

Multiplying with f4 = 1
[2] and using (4.41) and (4.42) gives that

γ42
43 = f4g42

C4
4C2

3

C4
4C2

2

=
1

[2]
[3]

[2]
−[3]

− 1,

which is the coefficent of β43 in p42 we calculated in (4.17).
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Birkhäuser/Springer, New York, 2010.

[Mur95] G. E. Murphy. The representations of Hecke algebras of type An. J.
Algebra, 173(1):97–121, 1995.

[Ros88] M. Rosso. Finite dimensional representations of the quantum analog of
the enveloping algebra of a complex simple lie algebra. Communica-
tions in Mathematical Physics, 117(4):581–593, Dec 1988.

[Ste96] J. R. Stembridge. On the fully commutative elements of Coxeter
groups. J. Algebraic Combin., 5(4):353–385, 1996.

[Wee12] T. Weelinck. Representation Theory of the Temperley-Lieb Algebra
and its connections with the Hecke Algebra. Bachelor thesis, Uni-
versiteit van Amsterdam, July 2012. https://esc.fnwi.uva.nl/
thesis/centraal/files/f1637901874.pdf.

[Wen87] H. Wenzl. On sequences of projections. C. R. Math. Rep. Acad. Sci.
Canada, 9(1):5–9, 1987.

[Wen88] H. Wenzl. Hecke algebras of type An and subfactors. Invent. Math.,
92(2):349–383, 1988.

[Wey39] H. Weyl. The Classical Groups. Their Invariants and Representations.
Princeton University Press, Princeton, NJ, 1939.

98

http://jones.math.unibas.ch/~kraft/docs/primernew.pdf
http://jones.math.unibas.ch/~kraft/docs/primernew.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f1637901874.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f1637901874.pdf

	Introduction
	Motivation
	Overview

	The Temperley–Lieb algebra
	The Hecke algebra and the Temperley–Lieb algebra
	Combinatorics and representations
	A Schur–Weyl duality

	Idempotents in the Temperley–Lieb algebra
	The generic case
	Specialization at a root of unity

	An upper triangular relation
	A new basis
	The case n = 4
	Relating with a cellular basis

	References

